Table 3: Accuracy of models training with fixed and scheduled temperature.
Properties’ Weight Scheduled 5.00E-02 4.06E-02 2.23E-02 8.31E-03 2.13E-03 3.77E-04 4.63E-05 3.98E-06 2.41E-07 1.04E-08
(16, 0, 0, 0, 0, 1) 0.57 0.38 0.41 0.52 0.55 0.55 0.54 0.54 0.54 0.55 0.53
(16, 0, 0, 0, 0, 2) 0.68 0.33 0.34 0.45 0.54 0.54 0.55 0.54 0.54 0.54 0.54
(16, 0, 0, 0, 0, 4) 0.69 0.26 0.31 0.37 0.54 0.55 0.54 0.53 0.55 0.55 0.54
(16, 0, 0, 0, 0, 8) 0.70 0.26 0.26 0.37 0.51 0.54 0.54 0.54 0.55 0.54 0.55
(16, 0, 0, 0, 0, 16) 0.70 0.19 0.26 0.35 0.47 0.54 0.54 0.55 0.52 0.54 0.55
(16, 0, 0, 0, 0, 32) 0.70 0.16 0.20 0.31 0.43 0.54 0.55 0.55 0.54 0.54 0.55
(16, 0, 0, 0, 1, 0) 0.61 0.39 0.39 0.52 0.55 0.53 0.54 0.55 0.54 0.54 0.54
(16, 0, 0, 0, 2, 0) 0.68 0.26 0.30 0.40 0.54 0.54 0.55 0.55 0.54 0.54 0.54
(16, 0, 0, 0, 4, 0) 0.69 0.10 0.11 0.31 0.47 0.53 0.54 0.55 0.55 0.53 0.54
(16, 0, 0, 0, 8, 0) 0.67 0.08 0.08 0.14 0.43 0.54 0.54 0.54 0.54 0.54 0.54
(16, 0, 0, 0, 16, 0) 0.64 0.07 0.07 0.09 0.22 0.48 0.54 0.55 0.55 0.54 0.54
(16, 0, 0, 0, 32, 0) 0.65 0.06 0.07 0.08 0.12 0.46 0.55 0.55 0.53 0.54 0.53
(16, 0, 0, 1, 0, 0) 0.56 0.43 0.49 0.55 0.54 0.54 0.55 0.55 0.54 0.55 0.54
(16, 0, 0, 2, 0, 0) 0.67 0.37 0.45 0.49 0.54 0.54 0.55 0.54 0.54 0.54 0.54
(16, 0, 0, 4, 0, 0) 0.68 0.18 0.26 0.42 0.53 0.53 0.55 0.54 0.54 0.55 0.54
(16, 0, 0, 8, 0, 0) 0.67 0.15 0.10 0.24 0.49 0.55 0.54 0.54 0.53 0.55 0.54
(16, 0, 0, 16, 0, 0) 0.66 0.08 0.09 0.13 0.40 0.53 0.54 0.54 0.53 0.55 0.55
(16, 0, 0, 32, 0, 0) 0.65 0.07 0.08 0.10 0.18 0.46 0.55 0.54 0.54 0.54 0.55
(16, 0, 1, 0, 0, 0) 0.54 0.55 0.55 0.54 0.55 0.54 0.55 0.54 0.54 0.54 0.54
(16, 0, 2, 0, 0, 0) 0.53 0.50 0.53 0.53 0.54 0.53 0.54 0.55 0.54 0.55 0.53
(16, 0, 4, 0, 0, 0) 0.55 0.37 0.43 0.54 0.54 0.55 0.55 0.54 0.55 0.54 0.54
(16, 0, 8, 0, 0, 0) 0.59 0.31 0.32 0.46 0.54 0.54 0.53 0.55 0.55 0.54 0.54
(16, 0, 16, 0, 0, 0) 0.65 0.25 0.27 0.38 0.51 0.54 0.54 0.54 0.54 0.55 0.54
(16, 0, 32, 0, 0, 0) 0.65 0.24 0.26 0.34 0.48 0.55 0.53 0.55 0.54 0.55 0.55
(16, 1, 0, 0, 0, 0) 0.53 0.55 0.54 0.55 0.55 0.54 0.55 0.54 0.53 0.54 0.54
(16, 2, 0, 0, 0, 0) 0.54 0.55 0.54 0.54 0.55 0.54 0.55 0.54 0.55 0.55 0.53
(16, 4, 0, 0, 0, 0) 0.54 0.52 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.54 0.54
(16, 8, 0, 0, 0, 0) 0.56 0.40 0.44 0.54 0.54 0.55 0.51 0.54 0.54 0.54 0.54
(16, 16, 0, 0, 0, 0) 0.59 0.36 0.40 0.51 0.54 0.54 0.54 0.54 0.55 0.55 0.55
(16, 32, 0, 0, 0, 0) 0.60 0.31 0.35 0.45 0.53 0.55 0.54 0.54 0.55 0.54 0.53
(1, 1, 1, 1, 1, 1) 0.71 0.10 0.10 0.26 0.40 0.54 0.55 0.54 0.55 0.54 0.55
Table 4: Perplexity of models training with fixed and scheduled temperature.
Properties’ Weight Scheduled 5.00E-02 4.06E-02 2.23E-02 8.31E-03 2.13E-03 3.77E-04 4.63E-05 3.98E-06 2.41E-07 1.04E-08
(16, 0, 0, 0, 0, 1) 3.19 32.86 19.17 5.06 3.47 3.49 3.51 3.56 3.53 3.51 3.74
(16, 0, 0, 0, 0, 2) 2.54 73.81 55.23 12.79 3.65 3.52 3.50 3.61 3.78 3.63 3.56
(16, 0, 0, 0, 0, 4) 2.50 109.18 89.79 37.77 4.27 3.51 3.56 3.80 3.47 3.51 3.65
(16, 0, 0, 0, 0, 8) 2.46 121.70 114.00 61.17 7.40 3.58 3.65 3.62 3.52 3.53 3.48
(16, 0, 0, 0, 0, 16) 2.45 133.34 117.52 76.82 14.45 3.81 3.60 3.50 3.98 3.66 3.46
(16, 0, 0, 0, 0, 32) 2.44 135.78 124.38 84.53 20.14 5.13 3.51 3.52 3.57 3.55 3.46
(16, 0, 0, 0, 1, 0) 2.87 42.33 28.85 5.43 3.48 3.70 3.59 3.49 3.65 3.52 3.57
(16, 0, 0, 0, 2, 0) 2.59 100.39 80.88 26.54 3.79 3.60 3.46 3.46 3.65 3.59 3.56
(16, 0, 0, 0, 4, 0) 2.59 138.53 132.11 75.39 9.41 3.73 3.53 3.53 3.48 3.73 3.61
(16, 0, 0, 0, 8, 0) 2.71 144.80 142.20 119.56 33.43 3.65 3.62 3.60 3.53 3.54 3.62
(16, 0, 0, 0, 16, 0) 3.03 147.71 143.68 129.42 78.43 7.56 3.55 3.52 3.47 3.55 3.70
(16, 0, 0, 0, 32, 0) 2.91 147.03 143.16 131.12 94.99 24.03 3.46 3.46 3.87 3.61 3.74
(16, 0, 0, 1, 0, 0) 3.34 15.90 8.25 3.50 3.61 3.57 3.40 3.48 3.54 3.46 3.60
(16, 0, 0, 2, 0, 0) 2.55 52.35 23.36 7.21 3.65 3.57 3.54 3.61 3.55 3.65 3.58
(16, 0, 0, 4, 0, 0) 2.67 113.22 89.94 29.01 3.90 3.66 3.53 3.57 3.62 3.44 3.55
(16, 0, 0, 8, 0, 0) 2.73 117.66 127.01 78.11 9.31 3.48 3.62 3.55 3.90 3.43 3.60
(16, 0, 0, 16, 0, 0) 2.85 137.28 129.85 102.09 28.62 3.77 3.64 3.60 3.82 3.50 3.49
(16, 0, 0, 32, 0, 0) 2.91 138.28 132.57 106.69 56.22 8.10 3.49 3.59 3.63 3.56 3.48
(16, 0, 1, 0, 0, 0) 3.68 3.82 3.59 3.54 3.43 3.61 3.52 3.57 3.50 3.56 3.52
(16, 0, 2, 0, 0, 0) 3.93 7.98 4.98 3.75 3.60 3.98 3.53 3.46 3.66 3.48 3.74
(16, 0, 4, 0, 0, 0) 3.46 28.21 16.40 4.10 3.55 3.48 3.49 3.54 3.52 3.65 3.53
(16, 0, 8, 0, 0, 0) 3.00 63.37 46.70 11.80 3.68 3.61 3.87 3.48 3.53 3.52 3.61
(16, 0, 16, 0, 0, 0) 2.66 97.26 80.50 28.65 5.02 3.55 3.55 3.60 3.57 3.49 3.64
(16, 0, 32, 0, 0, 0) 2.64 108.11 93.90 48.26 9.78 3.54 3.69 3.52 3.59 3.42 3.44
(16, 1, 0, 0, 0, 0) 3.66 3.44 3.64 3.48 3.50 3.65 3.47 3.67 4.10 3.61 3.53
(16, 2, 0, 0, 0, 0) 3.51 3.71 3.62 3.57 3.47 3.56 3.43 3.58 3.47 3.52 3.80
(16, 4, 0, 0, 0, 0) 3.55 6.83 4.38 3.55 3.44 3.59 3.70 3.55 3.63 3.65 3.61
(16, 8, 0, 0, 0, 0) 3.27 26.90 14.02 3.82 3.56 3.49 4.25 3.53 3.63 3.54 3.60
(16, 16, 0, 0, 0, 0) 3.01 53.50 35.36 7.15 3.58 3.64 3.61 3.56 3.50 3.50 3.48
(16, 32, 0, 0, 0, 0) 2.96 72.86 54.11 16.19 4.17 3.53 3.56 3.56 3.54 3.62 3.78
(1, 1, 1, 1, 1, 1) 2.49 159.26 145.45 112.62 38.33 3.88 3.51 3.56 3.51 3.63 3.43
Progressive Training in Recurrent Neural Networks for Chord Progression Modeling
95