tests of the system, as well as enhancing MultiSense
with even more sensors.
REFERENCES
Adafruit AMG8833 IR Thermal Camera Breakout.
https://www.adafruit.com/product/3538.
Adafruit Feather 32u4 with RFM69HCW Packet Radio -
433MHz. https://www.adafruit.com/product/3077.
NooElec NESDR Mini 2 SDR.
https://www.nooelec.com/store/ sdr/ sdr-
receivers/nesdr-mini2-rtl2832u-r820t2.html.
Raspberry Shake Original Pi-Full Kit.
https://shop.raspberryshake.org /product/magnitude-
9/.
RF Code. http://www.rfcode.com/.
Alwan, M., Rajendran, P., Kell, S., Mack, D., Dalal, S.,
Wolfe, M., and Felder, R. (2006). A Smart and Passive
Floor-Vibration Based Fall Detector for Elderly. In
Information and Communication Technologies.
Amin, M. G., Zhang, Y. D., and Boashash, B. (2015). High-
Resolution Time-Frequency Distributions for Fall De-
tection. In Proc. SPIE.
Anderson, D., Luke, R., Keller, J., Skubic, M., Rantz, M.,
and Aud, M. (2009). Linguistic summarization of ac-
tivities from video for fall detection using voxel per-
son and fuzzy logic. Computer Vision and Image Un-
derstanding, 113(1):80–89.
CDC (2013). Falls among older adults: An overview.
http://www.cdc.gov /homeandrecreational-
safety/Falls/adultfalls.html.
Debard, G., Baldewijns, G., Goedeme, T., Tuytelaars, T.,
and Vanrumste, B. (2015). Camera-based fall detec-
tion using a particle filter. In Proc. IEEE Eng. in Med.
and Bio., pages 6947–6950.
et al., C. G. (2015). Embedded DSP-Based telehealth radar
system for remote indoor fall detection. IEEE J.
Biomed. Health Inform., 19(1):92–101.
Gadde, A., Amin, M. G., Zhang, Y. D., and Ahmad, F.
(2014). Fall detection and classification based on
time-scale radar signal characteristics. In Proc. SPIE.
Kangas, M., Vikman, I., Nyberg, L., Korpelainen, R., Lind-
blom, J., and Jamsa, T. (2012). Comparison of real-
life accidental falls in older people with experimen-
tal falls in middle-aged test subjects. Gait & Posture,
35:500–505.
Khan, S. and Hoey, J. (2017). Review of fall detection tech-
niques: A data availability perspective. Medical Engi-
neering and Physics, 39:12–22.
Li, Y., Ho, K. C., and Popescu, M. (2012). A microphone
array system for automatic fall detection. IEEE Trans.
Biomed. Eng., 59(2):1291–1301.
Li, Y., Ho, K. C., and Popescu, M. (2014). Efficient Source
Separation Algorithms for Acoustic Fall Detection
Using a Microsoft Kinect. IEEE Trans. Biomed. Eng.,
61(3):745–755.
Lipsitz, L., Tchalla, A., Iloputaife, I., Gagnon, M., Dole, K.,
Zhong, Z., and Klickstein, L. (2016). Evaluation of an
Automated Falls Detection Device in Nursing Home
Residents. J. Amer. Geriatrics Soc., 64:365–368.
Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., and Li, Y.
(2014). Depth-based human fall detection via shape
features and improved extreme learning machine.
IEEE J of Biomed. and Health Info., 18(6):1915–
1922.
Malpani, S., S, A. C., and Narasimhadhan, A. (2016). Ther-
mal vision human classification and localization using
bag of visual word. In IEEE Region 10 Conference.
Mastorakis, G. and Makris, D. (2012). Fall detection system
using Kinect’s infrared sensor. J. of Real-Time Image
Proc.
Planinc, R. and Kampel, M. (2012). Introducing the use of
depth data for fall detection. Personal & Ubiq Comp,
17:1063–1072.
Portmann, J., Lynen, S., and Chli, M. (2014). People de-
tection and tracking from aerial thermal views. In
IEEE International Conference on Robotics and Au-
tomation.
Preece, J. (2019). The Best Fall Detection Sen-
sors. http://www.toptenreviews. com/health/senior-
care/best-fall-detection-sensors.
Skubic, M., Harris, B., Stone, E., Ho, K., Su, B.-Y., and
Rantz, M. (2016). Testing non-wearable fall detection
methods in the homes of older adults. In IEEE Con-
ference of the Engineering in Medicine and Biology
Society.
Sposaro, F. and Tyson, G. (2009). iFall: an Android appli-
cation for fall monitoring and response. In IEEE Eng
Med Biol Soc.
Wang, Y., Wu, K., and Ni, L. (2017). WiFall: Device-Free
Fall Detection by Wireless Networks. IEEE Trans.
Mob. Comput, 16(2):581–594.
Zigel, Y., Litvak, D., and Gannot, I. (2009). A Method
for Automatic Fall Detection of Elderly People using
Floor Vibrations and Sound - Proof of concept on hu-
man mimicking doll falls. IEEE Trans. on Biomedical
Eng., 56(12):2858–2867.
SENSORNETS 2020 - 9th International Conference on Sensor Networks
40