Ci, Y., Ma, X., Wang, Z., Li, Z., and Luo, Z. (2018). User-
guided deep anime line art colorization with condi-
tional adversarial networks. In Proceedings of the
26th ACM International Conference on Multimedia,
pages 1536–1544.
Frans, K. (2017). Outline colorization through tandem ad-
versarial networks.
Furusawa, C., Hiroshiba, K., Ogaki, K., and Odagiri, Y.
(2017). Comicolorization: Semi-automatic manga
colorization. In SIGGRAPH Asia 2017 Technical
Briefs, number 12, pages 12:1–12:4.
Hensman, P. and Aizawa, K. (2017). cgan-based manga col-
orization using a single training image. In 2017 14th
IAPR International Conference on Document Analysis
and Recognition, volume 3, pages 72–77.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2016).
Image-to-image translation with conditional adversar-
ial networks. arXiv:1611.07004.
Li, C., Liu, X., and Wong, T.-T. (2017). Deep extraction of
manga structural lines. ACM Transactions on Graph-
ics, 36(4):117:1–117:12.
Liu, Y., Qin, Z., Luo, Z., and Wang, H. (2017). Auto-
painter: Cartoon image generation from sketch by us-
ing conditional generative adversarial networks.
Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T.,
Yamasaki, T., and Aizawa, K. (2017). Sketch-based
manga retrieval using manga109 dataset.
Qu, Y., Wong, T.-T., and Heng, P.-A. (2006). Manga
colorization. ACM Transactions on Graphics,
25(3):1214–1220.
Sangkloy, P., Lu, J., Fang, C., Yu, F., and Hays, J. (2017).
Scribbler: Controlling deep image synthesis with
sketch and color. In The IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6836–
6845.
Shaham, T. R., Dekel, T., and Michaeli, T. (2019). Singan:
Learning a generative model from a single natural im-
age. In The IEEE International Conference on Com-
puter Vision, pages 4570–4580.
Simo-Serra, E., Iizuka, S., and Ishikawa, H. (2018a).
Mastering Sketching: Adversarial Augmentation for
Structured Prediction. ACM Transactions on Graph-
ics, 37(1):11:1–11:13.
Simo-Serra, E., Iizuka, S., and Ishikawa, H. (2018b). Real-
Time Data-Driven Interactive Rough Sketch Inking.
ACM Transactions on Graphics, 37(4):98:1–98:14.
Simo-Serra, E., Iizuka and K. Sasaki, S., and Ishikawa, H.
(2016). Learning to Simplify: Fully Convolutional
Networks for Rough Sketch Cleanup. ACM Transac-
tions on Graphics, 35(4):121:1–121:11.
Sun, W., Burie, J., Ogier, J., and Kise, K. (2013). Specific
comic character detection using local feature match-
ing. In 2013 12th International Conference on Docu-
ment Analysis and Recognition, pages 275–279.
S´ykora, D., Dingliana, J., and Collins, S. (2009). Lazy-
brush: Flexible painting tool for hand-drawn cartoons.
Computer Graphics Forum, 28(2):599–608.
Taizan (2016). PaintsChainer. Preferred Networks.
Tolle, H. and Arai, K. (2011). Method for real time text ex-
traction of digital manga comic. International Journal
of Image Processing, 4(6):669–676.
Yao, C., Hung, S., Li, G., Chen, I., Adhitya, R., and Lai, Y.
(2017). Manga vectorization and manipulation with
procedural simple screentone. IEEE Transactions on
Visualization and Computer Graphics, 23(2):1070–
1084.
Zhang, L., Ji, Y., Lin, X., and Liu, C. (2017). Style trans-
fer for anime sketches with enhanced residual u-net
and auxiliary classifier gan. In 2017 4th IAPR Asian
Conference on Pattern Recognition, pages 506–511.
Zhang, L., Li, C., Wong, T.-T., Ji, Y., and Liu, C. (2018).
Two-stage sketch colorization. ACM Transactions on
Graphics, 37(6):261:1–261:14.