EECS Department, UC California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EE
CS-2008-8.html [online; Oct 24th 2019]
Chandola, V., Banerjee, A. and Kuma, V. (2009) "Anomaly
detection: A survey" ACM computing surveys (CSUR),
41(3), 15.
Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. (2013)
"Network anomaly detection: methods, systems and
tools" Ieee communications surveys & tutorials, 16(1),
303-336.
Ahmed, M., Mahmood, A. N., and Hu, J. (2016) "A survey
of network anomaly detection techniques" Journal of
Network and Computer Applications, 60, 19-31.
Fernandes, G., Rodrigues, J. J., Carvalho, L. F., Al-Muhtadi,
J. F., and Proença, M. L. (2019) "A comprehensive
survey on network anomaly detection"."
Telecommunication Systems, 70(3), 447-489.
Hamdi, M., and Boudriga, N. (2007) "Detecting Denial-of-
Service attacks using the wavelet transform" Computer
Communications, 30(16), 3203-3213.
Lakhina, A., Crovella, M., and Diot, C. (2004) "Diagnosing
network-wide traffic anomalies" ACM SIGCOMM
computer communication review (Vol. 34, No. 4, pp.
219-230). ACM.
Yeung, D. S., Jin, S., and Wang, X. (2007) "Covariance-
matrix modeling and detecting various flooding attacks"
IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 37(2), 157-169.
MacQueen, J. (1967) "Some methods for classification and
analysis of multivariate observations" Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability (Vol. 1, No. 14, pp. 281-297).
Cover, T., and Hart, P. (1967) "Nearest neighbor pattern
classification" IEEE transactions on information theory,
13(1), 21-27.
Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.
(1998) "Automatic subspace clustering of high
dimensional data for data mining applications" (Vol. 27,
No. 2, pp. 94-105). ACM.
Estevez-Tapiador, J. M., Garcia-Teodoro, P., and Diaz-
Verdejo, J. E. (2003) "Stochastic protocol modeling for
anomaly based network intrusion detection" First IEEE
International Workshop on Information Assurance,
2003. IWIAS 2003. Proceedings. (pp. 3-12). IEEE.
Jensen F. V. (1997) "An introduction to Bayesian networks"
Springer, ISBN 9780387915029
Nielsen T. D., Jensen F. V. (2007) "Bayesian Networks and
Decision Graphs" Springer, ISBN 9780387682815
Schölkopf B., and Smola A. J. (2001) "Learning with kernels:
support vector machines, regularization, optimization,
and beyond" MIT press, ISBN 9780262256933
Haykin S. (1994) "Neural networks: a comprehensive
foundation". Prentice Hall New York, ISBN
9780132733502
Shannon C. E. (1948) "A mathematical theory of
communication" The Bell System Technical Journal
27(3), 379-423
Kullback, S., and Leibler, R. A. (1951) "On information and
sufficiency" The annals of mathematical statistics, 22(1),
79-86.
Lee, W., and Xiang, D. (2001) "Information-theoretic
measures for anomaly detection" Proceedings 2001 IEEE
Symposium on Security and Privacy. S&P 2001 (pp.
130-143).
Bereziński, P., Jasiul, B., and Szpyrka, M. (2015) "An
entropy-based network anomaly detection method"
Entropy, 17(4), 2367-2408.
https://www.mdpi.com/1099-4300/17/4/2367 [online;
Oct 24th 2019]
Martos, G., Hernández, N., Muñoz, A., and Moguerza, J.
(2018) "Entropy measures for stochastic processes with
applications in functional anomaly detection". Entropy,
20(1), 33. https://www.mdpi.com/1099-4300/20/1/33
[online; Oct 24th 2019]
Kar, A. K. (2016) "Bio inspired computing – a review of
algorithms and scope of applications". Expert Systems
with Applications, 59, 20-32.
Castro, L. N., De Castro, L. N., and Timmis, J. (2002)
"Artificial immune systems: a new computational
intelligence approach" Springer.
Hooks, D., Yuan, X., Roy, K., Esterline, A., and Hernandez,
J. (2018) "Applying artificial immune system for
intrusion detection" 2018 IEEE Fourth International
Conference on Big Data Computing Service and
Applications (BigDataService) (287-292).
Aslahi-Shahri, B. M., Rahmani, R., Chizari, M., Maralani,
A., Eslami, M., Golkar, M. J., and Ebrahimi, A. (2016)
"A hybrid method consisting of GA and SVM for
intrusion detection system" Neural computing and
applications, 27(6), 1669-1676.
Hamamoto, A. H., Carvalho, L. F., Sampaio, L. D. H., Abrão,
T., and Proença Jr, M. L. (2018) "Network anomaly
detection system using genetic algorithm and fuzzy
logic" Expert Systems with Applications, 92, 390-402.
Bamakan, S. M. H., Wang, H., Yingjie, T., and Shi, Y. (2016)
"An effective intrusion detection framework based on
MCLP/SVM optimized by time-varying chaos particle
swarm optimization" Neurocomputing, 199, 90-102.
Wahid, A., and Rao, A. C. S. (2019) "A distance-based
outlier detection using particle swarm optimization
technique" Information and Communication Technology
for Competitive Strategies (pp. 633-643). Springer,
Singapore.
Storn, R., and Price, K. (1997) "Differential evolution – a
simple and efficient heuristic for global optimization
over continuous spaces" Journal of global optimization,
11(4), 341-359.
Elsayed, S., Sarker, R. and Slay, J. (2015) "Evaluating the
performance of a differential evolution algorithm in
anomaly detection" 2015 IEEE Congress on
Evolutionary Computation (CEC) (pp. 2490-2497).
Nevill-Manning, C.G. and Witten, I.H. (1997) "Linear-Time,
Incremental Hierarchy Inference for Compression"
Proceedings DCC '97. Data Compression Conference.
pp. 3–11