REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mane, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
and Zheng, X. (2016). TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Sys-
tems. arXiv:1603.04467.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recogni-
tion.
Dreyfus, S. E. (1990). Artificial neural networks, back
propagation, and the kelley-bryson gradient proce-
dure. Journal of Guidance, Control, and Dynamics,
13(5):926–928.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.
He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Deep Residual Learning for Image Recognition.
arXiv:1512.03385.
Howard, J. et al. (2018). fastai. https://github.com/fastai/
fastai.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv:1408.5093.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In NIPS’12 Proceedings of the 25th In-
ternational Conference on Neural Information, pages
1097–1105.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.
(1998). Gradient-Based Learning Applied to Docu-
ment Recognition. proc. OF THE IEEE.
Mikolajczyk, A. and Grochowski, M. (2018). Data augmen-
tation for improving deep learning in image classifica-
tion problem. In 2018 International Interdisciplinary
PhD Workshop (IIPhDW), pages 117–122. IEEE.
Nielsen, M. A. (2015). Neural Networks and Deep Learn-
ing. Determination Press.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang,
E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
and Lerer, A. (2017). Automatic Differentiation in
{PyTorch}. In NIPS Autodiff Workshop.
Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65(6):386–408.
Sherstinsky, A. (2018). Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory
(LSTM) Network. arXiv:1808.03314.
Swiftkey (2016). Swiftkey debuts world’s first smartphone
keyboard powered by Neural Networks. https:
//blog.swiftkey.com/swiftkey-debuts-worlds-first-
smartphone-keyboard-powered-by-neural-networks.
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu,
C. (2018). A Survey on Deep Transfer Learning.
arXiv:1808.01974.
Tesla (2019). Autopilot — Tesla. https://www.tesla.com/
pt{\ }PT/autopilot?redirect=no. Last accessed in Oc-
tober 14, 2019.
Valente de Almeida, R. and Vieira, P. (2017). Forest
Fire Finder – DOAS application to long-range forest
fire detection. Atmospheric Measurement Techniques,
10(6):2299–2311.
Bee2Fire: A Deep Learning Powered Forest Fire Detection System
609