and Multiagent Systems, AAMAS ’05, pages 60–66,
New York, NY, USA. ACM.
Belhumeur, V., Hespanha, J., and Kriegman, D. (1997).
Eigenfaces vs. fisherfaces: Recognition using class
specific linear projection. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence, 19(7):711–
720.
Bellman, R. E. (1961). Adaptive Control Precesses: A
Guided Tour. Princeton University Press.
Bishop, C. and James, G. (1993). Analysis of mul-
tiphase flows using dual-energy gamma densitome-
try and neural networks. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment,
327(2):580–593.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C. J. (1984). Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.
Cai, D., He, X., Han, J., and Zhang, H. (2006). Orthogonal
laplacianfaces for face recognition. Trans. Img. Proc.,
15(11):3608–3614.
Cai, L., Huang, L., and Liu, C. (2016). Age estima-
tion based on improved discriminative gaussian pro-
cess latent variable model. Multimedia Tools Appl.,
75(19):11977–11994.
Crihalmeanu, S., Ross, A., Schukers, S., and Hornak, L.
(2007). A protocol for multibiometric data acqui-
sition, storage and dissemination. In Technical Re-
port, WVU, Lane Department of Computer Science
and Electrical Engineering.
Darnell, G., Georgiev, S., Mukherjee, S., and Engelhardt, B.
(2017). Adaptive randomized dimension reduction on
massive data. Journal of Machine Learning Research,
18(140):1–30.
Daugman, J. (2004). How iris recognition works. IEEE
Trans. on Circuits and Systems for Video Technology,
14(21):21–30.
Eleftheriadis, S., Rudovic, O., and Pantic, M. (2015).
Discriminative shared gaussian processes for multi-
view and view-invariant facial expression recognition.
IEEE Transactions on Image Processing, 24(1):189–
204.
Fukunaga, K. (1990). Introduction to statistical pattern
recognition. Academic Press.
Gao, X., Wang, X., Tao, D., and Li, X. (2011). Super-
vised gaussian process latent variable model for di-
mensionality reduction. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics),
41(2):425–434.
Harandi, M., Salzmann, M., and Hartley, R. (2017). Joint
dimensionality reduction and metric learning: A ge-
ometric take. In Precup, D. and Teh, Y. W., edi-
tors, Proceedings of the 34th International Conference
on Machine Learning, volume 70, pages 1404–1413,
International Convention Centre, Sydney, Australia.
PMLR.
He, X. and Niyogi, P. (2003). Locality preserving projec-
tions. In Proceedings of the 16th International Con-
ference on Neural Information Processing Systems,
NIPS’03, pages 153–160. MIT Press.
Heisterkamp, D., Peng, J., and Dai, H. (2000). Feature rele-
vance learning with query shifting for content-based
image retrieval. In Proceedings 15th International
Conference on Pattern Recognition. ICPR-2000, vol-
ume 4, pages 250–253.
Howland, P. and Park, H. (2004). Generalizing discriminant
analysis using the generalized singular valuke decom-
position. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(8):995–1006.
Huo, X. and et al (2003). Optimal reduced-rank quadratic
classiers using the fukunaga-koontz transform, with
applications to automated target recognition. In Proc.
of SPIE Conference.
Jiang, X., Gao, J., Wang, T., and Zheng, L. (2012). Su-
pervised latent linear gaussian process latent variable
model for dimensionality reduction. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 42(6):1620–1632.
Lawrence, N. (2005). Probabilistic non-linear principal
component analysis with gaussian process latent vari-
able models. J. Mach. Learn. Res., 6:1783–1816.
Martinez, A. M. and Kak, A. (2001). Pca versus lda.
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 23(2):228–233.
Peng, J. (1995). Efficient memory-based dynamic program-
ming. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 438–446.
Peng, J., Seetharaman, G., Fan, W., and Varde, A. (2013).
Exploiting fisher and fukunaga-koontz transforms in
chernoff dimensionality reduction. ACM Transactions
on Knowledge Discovery from Data, 7(2):8:1–8:25.
Phillips, P. (2004). The facial recognition technology (feret)
database. IEEE Trans. Pattern Analysis and Machine
Intelligence, 22.
Pundlik, S., Woodard, D., and Birchfield, S. (2008). Non-
ideal iris segmentation using graph cuts. In IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 1–6.
Rasmussen, C. and Williams, C. (2005). Gaussian Pro-
cesses for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press.
Sarveniazi, A. (2014). An actual survey of dimensionality
reduction. American Journal of Computational Math-
ematics, 4(2):55–72.
Song, G., Wang, S., Huang, Q., and Tian, Q. (2015a).
Similarity gaussian process latent variable model for
multi-modal data analysis. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
4050–4058.
Song, G., Wang, S., Huang, Q., and Tian, Q. (2015b).
Similarity gaussian process latent variable model for
multi-modal data analysis. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
4050–4058.
Tipping, M. and Bishop, C. (1999). Probabilistic princi-
pal component analysis. JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, 61(3):611–622.
Ueffing, N., Simard, M., Larkin, S., and Johnson, J. (2007).
NRC’s PORTAGE system for WMT 2007. In In ACL-
2007 Second Workshop on SMT, pages 185–188.