Cohen, S. J., Kruglanski, A., Gelfand, M. J., Webber, D.,
and Gunaratna, R. (2018). Al-qaeda’s propaganda de-
coded: A psycholinguistic system for detecting vari-
ations in terrorism ideology. Terrorism and political
violence, 30(1):142–171.
Comerford, M. (2016). What isis lost in dabiq. New States-
man.
Correa, D. and Sureka, A. (2013). Solutions to detect and
analyze online radicalization: a survey. arXiv preprint
arXiv:1301.4916.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Europol, T. (2016). European union terrorism situation and
trend report 2016. Europol.
Fang, A. C. and Cao, J. (2009). Adjective density as a text
formality characteristic for automatic text classifica-
tion: A study based on the british national corpus. In
Proceedings of the 23rd Pacific Asia Conference on
Language, Information and Computation, Volume 1,
volume 1.
Feakin, T. and Wilkinson, B. (2015). The Future of Jihad:
What Next for ISIL and Al-Qaeda? Australian Strate-
gic Policy Institute.
Fernandez, M., Asif, M., and Alani, H. (2018). Under-
standing the roots of radicalisation on twitter. In Pro-
ceedings of the 10th ACM Conference on Web Science,
pages 1–10. ACM.
Foltz, P. W., Kintsch, W., and Landauer, T. K. (1998). The
measurement of textual coherence with latent seman-
tic analysis. Discourse processes, 25(2-3):285–307.
Heylighen, F. and Dewaele, J.-M. (1999). Formality of
language: definition, measurement and behavioral de-
terminants. Interner Bericht, Center “Leo Apostel”,
Vrije Universiteit Br
¨
ussel.
Ingram, H. J. (2017). An analysis of inspire and dabiq:
Lessons from aqap and islamic state’s propaganda
war. Studies in Conflict & Terrorism, 40(5):357–375.
Iskandar, A. (2006). Is al jazeera alternative? The Real
(Arab) World: Is Reality TV Democratizing the Mid-
dle East?, 1(2):249.
Johnston, A. H. and Weiss, G. M. (2017). Identifying
sunni extremist propaganda with deep learning. In
2017 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 1–6. IEEE.
Kijewski, P., Jaroszewski, P., Urbanowicz, J. A., and Armin,
J. (2016). The never-ending game of cyberattack attri-
bution. In Combatting Cybercrime and Cyberterror-
ism, pages 175–192. Springer.
Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and
Chissom, B. S. (1975). Derivation of new readabil-
ity formulas (automated readability index, fog count
and flesch reading ease formula) for navy enlisted per-
sonnel. Technical report, Institute for Simulation and
Training, University of Central Florida.
McCarthy, P. M. and Jarvis, S. (2010). Mtld, vocd-d, and
hd-d: A validation study of sophisticated approaches
to lexical diversity assessment. Behavior research
methods, 42(2):381–392.
McKernan, B. (2016). Isis’ new magazine rumiyah shows
the terror group is ‘struggling to adjust to losses’. The
Independent.
Mencarini, M. and Sensidoni, G. (2017). Multilanguage
semantic behavioural algorithms to discover terrorist
related online. In Proceedings of the First Italian Con-
ference on Cybersecurity (ITASEC17), volume 1816.
CEUR.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Montemurro, M. A. (2001). Beyond the zipf–mandelbrot
law in quantitative linguistics. Physica A: Statistical
Mechanics and its Applications, 300(3-4):567–578.
Narayanan, A., Paskov, H., Gong, N. Z., Bethencourt, J.,
Stefanov, E., Shin, E. C. R., and Song, D. (2012). On
the feasibility of internet-scale author identification.
In 2012 IEEE Symposium on Security and Privacy,
pages 300–314. IEEE.
Neal, T., Sundararajan, K., Fatima, A., Yan, Y., Xiang,
Y., and Woodard, D. (2017). Surveying stylometry
techniques and applications. ACM Comput. Surv.,
50(6):86:1–86:36.
Nouh, M., Nurse, J. R., and Goldsmith, M. (2019). Un-
derstanding the radical mind: Identifying signals to
detect extremist content on twitter. arXiv preprint
arXiv:1905.08067.
Saif, H., Dickinson, T., Kastler, L., Fernandez, M., and
Alani, H. (2017). A semantic graph-based approach
for radicalisation detection on social media. In Eu-
ropean semantic web conference, pages 571–587.
Springer.
Shane, S. and Hubbard, B. (2014). Isis displaying a deft
command of varied media. New York Times, 30.
Sikos, J., David, P., Habash, N., and Faraj, R. (2014).
Authorship analysis of inspire magazine through sty-
lometric and psychological features. In 2014 IEEE
Joint Intelligence and Security Informatics Confer-
ence, pages 33–40. IEEE.
ˇ
Si
ˇ
skov
´
a, Z. (2012). Lexical richness in efl students’ narra-
tives. Language Studies Working Papers, 4:26–36.
Sun, F., Guo, J., Lan, Y., Xu, J., and Cheng, X. (2016).
Sparse word embeddings using l1 regularized online
learning. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence,
pages 2915–2921. AAAI Press.
Tausczik, Y. R. and Pennebaker, J. W. (2010). The psy-
chological meaning of words: Liwc and computerized
text analysis methods. Journal of language and social
psychology, 29(1):24–54.
Vergani, M. and Bliuc, A.-M. (2018). The language of new
terrorism: differences in psychological dimensions of
communication in dabiq and inspire. Journal of Lan-
guage and Social Psychology, 37(5):523–540.
Weimann, G. (2004). www.terror.net: How modern terror-
ism uses the Internet, volume 116. DIANE Publish-
ing.
Wignell, P., Tan, S., O’Halloran, K., and Lange, R. (2017).
A mixed methods empirical examination of changes in
emphasis and style in the extremist magazines dabiq
and rumiyah. Perspectives on Terrorism, 11(2):2–20.
Wilner, A. S. (2018). Cybersecurity and its discontents:
Artificial intelligence, the internet of things, and digi-
tal misinformation. International Journal, 73(2):308–
316.
Radical Text Detection based on Stylometry
531