(2019). The conundrum of success in music: playing
it or talking about it? IEEE Access, pages 1–10.
D’Ambrosio, S., Pasquale, S. D., Iannone, G., Malandrino,
D., Negro, A., Patimo, G., Scarano, V., Spinelli, R.,
and Zaccagnino, R. (2017). Privacy as a proxy for
Green Web browsing: Methodology and experimen-
tation. Computer Networks, 126:81–99.
De Filippi, P. and Hassan, S. (2018). Blockchain technology
as a regulatory technology: From code is law to law is
code. arXiv preprint arXiv:1801.02507.
Deeba, F., Mohammed, S. K., Bui, F. M., and Wahid, K. A.
(2016). Learning from imbalanced data: A com-
prehensive comparison of classifier performance for
bleeding detection in endoscopic video. In 2016 5th
International Conference on Informatics, Electronics
and Vision (ICIEV), pages 1006–1009. IEEE.
Domingos, P. M. (2012). A few useful things to know about
machine learning. Commun. acm, 55(10):78–87.
Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier, R.
(2014). The rise of panopticons: Examining region-
specific third-party web tracking. In International
Workshop on Traffic Monitoring and Analysis, pages
104–114. Springer.
Gervais, A., Filios, A., Lenders, V., and Capkun, S. (2017).
Quantifying web adblocker privacy. In European Sym-
posium on Research in Computer Security, pages 21–
42. Springer.
Guarino, A., Lettieri, N., Malandrino, D., Russo, P., and Za-
ccagnino, R. (2019). Visual analytics to make sense of
large-scale administrative and normative data. In 2019
23rd International Conference Information Visualisa-
tion (IV), pages 133–138. IEEE.
Guha, S., Cheng, B., and Francis, P. (2011). Privad: Prac-
tical privacy in online advertising. In USENIX con-
ference on Networked systems design and implemen-
tation, pages 169–182.
Haddadi, H., Hui, P., and Brown, I. (2010). Mobiad: private
and scalable mobile advertising. In Proceedings of the
fifth ACM international workshop on Mobility in the
evolving internet architecture, pages 33–38. ACM.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.
Hanke, J. and Thiesse, F. (2017). Leveraging Text Min-
ing for the Design of a Legal Knowledge Management
System. In Ramos, I., Tuunainen, V., and Krcmar, H.,
editors, ECIS.
Hassan, S. and De Filippi, P. (2017). The expansion of algo-
rithmic governance: From code is law to law is code.
Field Actions Science Reports. The journal of field ac-
tions, (Special Issue 17):88–90.
Hossin, M. and Sulaiman, M. (2015). A review on evalua-
tion metrics for data classification evaluations. Inter-
national Journal of Data Mining & Knowledge Man-
agement Process, 5(2):1.
Ikram, M., Asghar, H. J., Kaafar, M. A., Mahanti, A.,
and Krishnamurthy, B. (2017). Towards seamless
tracking-free web: Improved detection of trackers via
one-class learning. Proceedings on Privacy Enhanc-
ing Technologies, 2017(1):79–99.
Interactive Advertising Bureau (IAB) (2019). In-
teractive Advertising Bureau (IAB) and Price-
waterhouseCoopers (PwC) US. Internet Advertis-
ing Revenue Report. https://www.iab.com/news/
iab-advertising-revenue-q1-2019/.
Iqbal, U., Snyder, P., Zhu, S., Livshits, B., Qian, Z., and
Shafiq, Z. (2020). Adgraph: A graph-based approach
to ad and tracker blocking. In Proc. of IEEE Sympo-
sium on Security and Privacy.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).
An introduction to statistical learning, volume 112.
Springer.
Keim, D. A., Mansmann, F., Schneidewind, J., Thomas,
J., and Ziegler, H. (2008). Visual analytics: Scope
and challenges. In Visual data mining, pages 76–90.
Springer.
Kov
´
acs, I., Mih
´
altz, K., Kr
´
anitz, K., Juh
´
asz,
´
E., Tak
´
acs,
´
A., Dienes, L., Gergely, R., and Nagy, Z. Z. (2016).
Accuracy of machine learning classifiers using bilat-
eral data from a scheimpflug camera for identifying
eyes with preclinical signs of keratoconus. Journal of
Cataract & Refractive Surgery, 42(2):275–283.
Krishnamurthy, B., Naryshkin, K., and Wills, C. (2011).
Privacy leakage vs. protection measures: the grow-
ing disconnect. In Proceedings of the Web, volume 2,
pages 1–10.
Krishnamurthy, B. and Wills, C. E. (2010). Privacy leakage
in mobile online social networks. In Proceedings of
the 3rd Wonference on Online social networks, pages
4–4. USENIX Association.
Kumar, A. and Sachdeva, N. (2019). Cyberbullying detec-
tion on social multimedia using soft computing tech-
niques: a meta-analysis. Multimedia Tools and Appli-
cations, pages 1–38.
Kushmerick, N. (1999). Learning to Remove Internet Ad-
vertisements. In Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS ’99,
pages 175–181.
Lai, M. (2019). On Language and Structure in Polarized
Communities. PhD thesis.
Larsson, S. (2018). Law, society and digital platforms: Nor-
mative aspects of large-scale data-driven tech compa-
nies. In The RCSL-SDJ Lisbon Meeting 2018” Law
and Citizenship Beyond The States.
Lawrence, E. (2012). Debugging with Fiddler: The com-
plete reference from the creator of the Fiddler Web
Debugger. Eric Lawrence.
Lettieri, N., Guarino, A., and Malandrino, D. (2018). E-
science and the law. three experimental platforms for
legal analytics. In JURIX, pages 71–80.
Lettieri, N., Guarino, A., Malandrino, D., and Za-
ccagnino, R. (2019). Platform economy and techno-
regulationexperimenting with reputation and nudge.
Future Internet, 11(7):163.
Li, T.-C., Hang, H., Faloutsos, M., and Efstathopoulos, P.
(2015). Trackadvisor: Taking back browsing privacy
from third-party trackers. In International Conference
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
538