Figure 3: Silhouette score for 5000 data instances, using the
number of clusters K = 15.
REFERENCES
Avishkar Misra, Mamatha Rudrapatna, and Arcot Sowmya
(2005). Automatic Lung Segmentation: A Com-
parison of Anatomical and Machine Learning Ap-
proaches. In Proceedings of the 2004 Intelligent Sen-
sors, Sensor Networks and Information Processing
Conference.
Bidgood, W. D., Horii, S. C., Prior, F. W., and Van Syckle,
D. E. (1997). Understanding and Using DICOM, the
Data Interchange Standard for Biomedical Imaging.
Journal of the American Medical Informatics Associ-
ation, 4(3):199–212.
Chen, M., Shi, X., Zhang, Y., Wu, D., and Guizani, M.
(2017). Deep Features Learning for Medical Im-
age Analysis with Convolutional Autoencoder Neural
Network. IEEE Transactions on Big Data.
Choplin, R. H., Boehme, J. M., and Maynard, C. D. (1992).
Picture archiving and communication systems: an
overview. RadioGraphics, 12(1):127–129.
Day, W. H. E. and Edelsbrunner, H. (1984). Efficient algo-
rithms for agglomerative hierarchical clustering meth-
ods. Journal of Classification, 1(1):7–24.
Dimitrovski, I., Kocev, D., Loskovska, S., and D
ˇ
zeroski, S.
(2011). Hierarchical annotation of medical images.
Pattern Recognition, 44(10-11):2436–2449.
Gower, J. C. (1971). A General Coefficient of Similarity
and Some of Its Properties. Biometrics.
Gueld, M. O., Kohnen, M., Keysers, D., Schubert, H., Wein,
B. B., Bredno, J., and Lehmann, T. M. (2003). Quality
of DICOM header information for image categoriza-
tion. In Medical Imaging 2002: PACS and Integrated
Medical Information Systems: Design and Evalua-
tion, volume 4685, pages 280–287. SPIE.
K
¨
allman, H. E., Halsius, E., Olsson, M., and Stenstr
¨
om, M.
(2009). DICOM metadata repository for technical in-
formation in digital medical images. Acta Oncologica,
48(2):285–288.
Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis (Wiley
Series in Probability and Statistics).
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In ImageNet Classification with Deep
Convolutional Neural Networks, pages 1097–1105.
Curran Associates, Inc.
L., K. and P., R. (1987). Clustering by means of Medoids.
In Statistical Data Analysis Based on the L1 Norm and
Related Methods.
Lehmann, T. M., Schubert, H., Keysers, D., Kohnen, M.,
and Wein, B. B. (2003). The IRMA code for unique
classification of medical images. In Medical Imaging
2003: PACS and Integrated Medical Information Sys-
tems: Design and Evaluation, volume 5033, page 440.
SPIE.
Masci, J., Meier, U., Cires¸an, D., and Schmidhuber, J.
(2011). Stacked convolutional auto-encoders for hier-
archical feature extraction. In Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics).
Park, H. S. and Jun, C. H. (2009). A simple and fast algo-
rithm for K-medoids clustering. Expert Systems with
Applications.
Qiang Yang and Pan, S. J. (2010). A Survey on Transfer
Learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359.
Rahman, M. M., Bhattacharya, P., and Desai, B. C. (2007).
A Framework for Medical Image Retrieval Using Ma-
chine Learning and Statistical Similarity Matching
Techniques With Relevance Feedback. IEEE Trans-
actions on Information Technology in Biomedicine,
11(1):58–69.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Jour-
nal of Computational and Applied Mathematics.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
cite arxiv:1409.1556.
Van Soest, J., Lustberg, T., Grittner, D., Marshall, M. S.,
Persoon, L., Nijsten, B., Feltens, P., and Dekker, A.
(2014). Towards a semantic PACS: Using Semantic
Web technology to represent imaging data. Studies in
health technology and informatics, 205:166–70.
Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised
deep embedding for clustering analysis. In 33rd In-
ternational Conference on Machine Learning, ICML
2016.
Yang, Y., Xu, D., Nie, F., Yan, S., and Zhuang, Y. (2010).
Image clustering using local discriminant models and
global integration. IEEE Transactions on Image Pro-
cessing.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D., and Weinberger, K. Q., editors, Ad-
vances in Neural Information Processing Systems 27,
pages 3320–3328. Curran Associates, Inc.
Zhang, Y. C. and Kagen, A. C. (2017). Machine Learn-
ing Interface for Medical Image Analysis. Journal of
Digital Imaging, 30(5):615–621.
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups
517