REFERENCES
Alsyouf, I., Humaid, F., and Al Kamali, S. (2014). Mishan-
dled baggage problem: Causes and improvement sug-
gestions. In Industrial Engineering and Engineering
Management (IEEM), 2014 IEEE International Con-
ference on, pages 154–158. IEEE.
Alsyouf, I., Kumar, U., Al-Ashi, L., and Al-Hammadi, M.
(2018). Improving baggage flow in the baggage han-
dling system at a UAE-based airline using lean Six
Sigma tools. Quality Engineering, 30(3):432–452.
Arabia, T. (2014). Lost luggage is history. Travel & Tourism
News Middle East, pages 1–2.
Atkin, J., Hoogeveen, H., and Stolletz, R. (2019). Airport
operations management. OR Spectrum, 41(3):613–
614.
Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine
Learning Research, 13:281–305.
Cramer, H. (1946). Mathematical methods of statics.
Princeton Mathematical Series, University Princeton,
Princeton.
Dijk, B., Santos, B. F., and Pita, J. P. (2019). The recov-
erable robust stand allocation problem: a gru airport
case study. OR Spectrum, 41(3):615–639.
Faas, R. (2018). Case Study 70 MB: Amsterdam Airport
Schiphol. Technical report.
Fawcett, T. (2006). An introduction to ROC analysis. Pat-
tern Recognition Letters, 27(8):861–874.
Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189–1232.
Garret, R. L. (2015). Baggage-scanning system minimizes
lost luggage. SITA Baggage report, 85:80–81.
He, H. and Garcia, E. (2009). Learning from Imbalanced
Data. IEEE Transactions on Knowledge and Data En-
gineering, 21(9):1263–1284.
Karelaia, N. and Hogarth, R. M. (2008). Determinants of
Linear Judgment: A Meta-Analysis of Lens Model
Studies. Psychological Bulletin, 134(3):404–426.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). LightGBM: A highly
efficient gradient boosting decision tree. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems 30, pages
3146–3154. Curran Associates, Inc.
Kleinbaum, D. G. and Klein, M. (2010). Logistic Regres-
sion – A Self-Learning Text. Statistics for Biology and
Health. Springer-Verlag New York.
Lin, Hong-en, A P Taylor, M. Z. R. (2005). A Review
of Travel-Time Prediction in Transport and Logistics.
Proceedings of the Eastern Asia Society for Trans-
portation Studies, 5(March):1433 – 1448.
London, I. (2016). Encoding cyclical continuous features -
24-hour time. https://ianlondon.github.io/.
Microsoft Corporation (2019). Parameters Tuning — Light-
GBM 2.2.4 documentation.
Nguyen, T. T. T. and Armitage, G. (2008). A survey of tech-
niques for internet traffic classification using machine
learning. IEEE Communications Surveys & Tutorials,
10(4):56–76.
Paalman, J., Mullick, S., Zervanou, K., and Zhang, Y.
(2019). Term based semantic clusters for very short
text classification. In Proceedings of the International
Conference Recent Advances in Natural Language
Processing 2019. Association for Computational Lin-
guistics (ACL).
Sam
`
a, M., D’Ariano, A., Palagachev, K., and Gerdts, M.
(2019). Integration methods for aircraft scheduling
and trajectory optimization at a busy terminal ma-
noeuvring area. OR Spectrum, 41(3):641–681.
SITA (2018). Air Transport Industry Insights - The Baggage
report. Technical report, Soci
´
et
´
e Internationale de
T
´
el
´
ecommunications A
´
eronautiques, Heathrowstraat
10, 1043 CH Amsterdam Netherlands.
Smith, J. (2017). GSE Technology Continues to Evolve.
Aviationpros.
Tang, J., Zou, Y., Ash, J., Zhang, S., Liu, F., and Wang,
Y. (2016). Travel time estimation using freeway point
detector data based on evolving fuzzy neural inference
system. PLoS ONE, 11(2).
Tate, R. F. (1954). Correlation between a discrete and a con-
tinuous variable. point-biserial correlation. The An-
nals of mathematical statistics, 25(3):603–607.
van Grol, R., Lindveld, K., Manfredi, S., and Danech-
Pajouh, M. (1999). DACCORD: On-line travel
time estimation/prediction results. In Proceedings of
Sixth World Congress on Intelligent Transport Systems
(ITS), Toronto, volume 37, pages 14–15.
Vanderlande (2019). FLEET - Vanderlande. Vander-
lande.com.
Wei, C., Lin, S., and Li, Y. (2003). Empirical validation
of freeway bus travel time forecasting. Transportation
Planning Journal, 32:651–679.
Wei, C. H. and Lee, Y. (2007). Development of freeway
travel time forecasting models by integrating different
sources of traffic data. IEEE Transactions on Vehicu-
lar Technology, 56(6 II):3682–3694.
Wirth, R. and Hipp, J. (2000). CRISP-DM: Towards a stan-
dard process model for data mining. In Proceedings of
the 4th international conference on the practical ap-
plications of knowledge discovery and data mining,
pages 29–39. Citeseer.
Wuisman, I. G. (2016). Simulating the performance of the
integral transfer baggage handling process at KLM.
Yalcin, A., Koberstein, A., and Schocke, K.-O. (2019). Mo-
tion and layout planning in a grid-based early baggage
storage system. OR Spectrum, 41(3):683–725.
Lost and Found: Predicting Airline Baggage At-risk of Being Mishandled
181