REFERENCES
Andreychuk, A., Yakovlev, K., Atzmon, D., and Stern, R.
(2019a). Multi-agent pathfinding (MAPF) with con-
tinuous time. CoRR, abs/1901.05506.
Andreychuk, A., Yakovlev, K. S., Atzmon, D., and Stern,
R. (2019b). Multi-agent pathfinding with continuous
time. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2019, pages 39–45. ijcai.org.
Audemard, G. and Simon, L. (2009). Predicting learnt
clauses quality in modern SAT solvers. In IJCAI,
pages 399–404.
Balyo, T., Heule, M. J. H., and J
¨
arvisalo, M. (2017). SAT
competition 2016: Recent developments. In AAAI,
pages 5061–5063.
Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh,
T. (2009). Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications.
IOS Press.
Bofill, M., Palah
´
ı, M., Suy, J., and Villaret, M. (2012). Solv-
ing constraint satisfaction problems with SAT modulo
theories. Constraints, 17(3):273–303.
Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin,
D., Betzalel, O., and Shimony, S. (2015). ICBS:
improved conflict-based search algorithm for multi-
agent pathfinding. In IJCAI, pages 740–746.
C
´
ap, M., Nov
´
ak, P., Vokr
´
ınek, J., and Pechoucek, M.
(2013). Multi-agent RRT: sampling-based coopera-
tive pathfinding. In International conference on Au-
tonomous Agents and Multi-Agent Systems, AAMAS
’13, 2013, pages 1263–1264.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2):100–107.
H
¨
onig, W., Kumar, T. K. S., Cohen, L., Ma, H., Xu, H.,
Ayanian, N., and Koenig, S. (2017). Summary: Multi-
agent path finding with kinematic constraints. In Pro-
ceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 4869–
4873.
Janovsky, P., C
´
ap, M., and Vokr
´
ınek, J. (2014). Finding co-
ordinated paths for multiple holonomic agents in 2-d
polygonal environment. In International conference
on Autonomous Agents and Multi-Agent Systems, AA-
MAS ’14, 2014, pages 1117–1124.
Kautz, H. A. and Selman, B. (1992). Planning as satisfiabil-
ity. In Proceedings of the 10th European Conference
on Artificial Intelligence, ECAI 1992, pages 359–363.
John Wiley and Sons.
Kornhauser, D., Miller, G. L., and Spirakis, P. G. (1984).
Coordinating pebble motion on graphs, the diameter
of permutation groups, and applications. In FOCS,
1984, pages 241–250.
Lam, E., Bodic, P. L., Harabor, D. D., and Stuckey, P. J.
(2019). Branch-and-cut-and-price for multi-agent
pathfinding. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI 2019, 2019, pages 1289–1296. ijcai.org.
LaValle, S. M. (2006). Planning algorithms. Cambridge
University Press.
Li, J., Surynek, P., Felner, A., Ma, H., and Koenig, S.
(2019). Multi-agent path finding for large agents. In
AAAI. AAAI Press.
Ma, H., Koenig, S., Ayanian, N., Cohen, L., H
¨
onig, W.,
Kumar, T. K. S., Uras, T., Xu, H., Tovey, C. A.,
and Sharon, G. (2017). Overview: Generalizations
of multi-agent path finding to real-world scenarios.
CoRR, abs/1702.05515.
Ma, H., Wagner, G., Felner, A., Li, J., Kumar, T. K. S.,
and Koenig, S. (2018). Multi-agent path finding with
deadlines. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,
pages 417–423.
Nieuwenhuis, R. (2010). SAT modulo theories: Getting the
best of SAT and global constraint filtering. In Prin-
ciples and Practice of Constraint Programming - CP
2010 - 16th International Conference, CP 2010, St.
Andrews, Scotland, UK, September 6-10, 2010. Pro-
ceedings, pages 1–2.
Ratner, D. and Warmuth, M. K. (1990). Nxn puzzle
and related relocation problem. J. Symb. Comput.,
10(2):111–138.
Ryan, M. R. K. (2008). Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. (JAIR),
31:497–542.
Sharon, G., Stern, R., Felner, A., and Sturtevant, N.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., 219:40–66.
Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2012). Conflict-based search for optimal multi-agent
path finding. In AAAI.
Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2013a). The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell., 195:470–495.
Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2013b). The increasing cost tree search for opti-
mal multi-agent pathfinding. Artificial Intelligence,
195:470–495.
Silver, D. (2005). Cooperative pathfinding. In Proceedings
of the First Artificial Intelligence and Interactive Dig-
ital Entertainment Conference, 2005, pages 117–122.
AAAI Press.
Sturtevant, N. R. (2012). Benchmarks for grid-based
pathfinding. Computational Intelligence and AI in
Games, 4(2):144–148.
Surynek, P. (2009). A novel approach to path planning
for multiple robots in bi-connected graphs. In 2009
IEEE International Conference on Robotics and Au-
tomation, ICRA 2009, pages 3613–3619. IEEE.
Surynek, P. (2010). An optimization variant of multi-robot
path planning is intractable. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2010. AAAI Press.
Surynek, P. (2012). Towards optimal cooperative path
planning in hard setups through satisfiability solving.