ACKNOWLEDGEMENTS
This work was partly supported by National Science
Foundation INSPIRE grant BCS-1247971 to Ali Mi-
nai.
REFERENCES
Acemoglu, D., M.Dahleh, Lobel, I., and Ozdaglar., A.
(2011). Bayesian learning in social networks. The
Review of Economic Studies, 78:1201–1236.
Adar, E. and Adamic, L. A. (2005). Tracking information
epidemics in blogspace. IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI’05), pages
207–214.
Allcott, H. and Gentzkow, M. (2017). Social media and
fake news in the 2016 election. Journal of Economic
Perspectives, 31:211–36.
Berry, D., editor (1997). How Implicit Is Implicit Learning?
Oxford University Press.
Brown, V., Tumeo, M., Larey, T., and Paulus, P. (1998).
Modeling cognitive interactions during group brain-
storming. Small Group Research, 29:495–526.
Brunato, M., Hoos, H. H., and Battiti, R. (2008). On ef-
fectively finding maximal quasi-cliques in graphs. In
In Proceedings of 2nd Learning and Intelligent Opti-
mization Workshop.
Buntain, C. and Golbeck, J. (2017). I want to believe:
Journalists and crowdsourced accuracy assessments in
twitter. CoRR, abs/1705.01613.
Campbell, D. T. (1960). Blind variation and selective re-
tention in creative thought as in other knowledge pro-
cesses. Psychol. Rev., 67:380–400.
Castillo, C., Mendoza, M., and Poblete, B. (2013). Pre-
dicting information credibility in time-sensitive social
media. Internet Research: Electronic Networking Ap-
plications and Policy, 23.
Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala,
A., Caldarelli, G., Stanley, H. E., and Quattrocioc-
chi, W. (2016). The spreading of misinformation on-
line. Proceedings of the National Academy of Sci-
ences, 113(3):554–559.
Dienes, Z. (1992). Connectionist and memory-array mod-
els of artificial grammar learning. Cognitive Science,
16(1):41–79.
Dienes, Z. and Berry, D. (1997). Implicit learning: Below
the subjective threshold. Psychnomic Bulletin and Re-
view, 4:3–23.
Fauconnier, G. and Turner, M. (2003). The Way We Think:
Conceptual Blending And The Mind’s Hidden Com-
plexities. Basic Books.
Gale, D. and Shachar, K. (2003). Bayesian learning in social
networks. Games and Economic Behavior, 45:329–
346.
Goldenberg, J., Han, S., Lehmann, D. R., and Hong, J. W.
(2008). The role of hubs in the adoption processes.
Journal of Marketing, American Marketing Associa-
tion.
Granovetter, M. (1978). Threshold models of collective be-
havior. American Journal of Sociology, 83(6):1420–
1443.
Iyer, L. R., Doboli, S., Minai, A. A., Brown, V. R., Levine,
D. S., and Paulus, P. B. (2009). Neural dynamics of
idea generation and the effects of priming. Neural Net-
works, 22:674–686.
Iyer, L. R., Venkatesan, V., and Minai, A. A. (2010).
Neurcognitive spotlights:configuring domains for
ideation. In Proceedings of WCCI 2010, pages 3026–
3033.
Kempe, D., Kleinberg, J., and Tardos, E. (2003). Maximiz-
ing the spread of influence through a social network.
In In Proceedings of the 9th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.
Lamberson, P. J. (2010). Social learning in social networks.
The B.E. Journal of Theoretical Economics, 10:36.
Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., and
Hurst, M. (2007). Cascading behavior in large blog
graphs. In SDM07: Proc. of the SIAM Conference on
Data Mining.
Leskovec, J., Singh, A., and Kleinberg, J. M. (2006). Pat-
terns of influence in a recommendation network. In
Proc. of the 10th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PA-KDD’06),
pages 380–389.
Liben-Nowell, D. and Kleinberg, J. M. (2008). Tracing the
flow of information on a global scale using internet
chain-letter data. In Proc. of the National Academy of
Sciences, volume 105(12), pages 4633–4638.
Liggett, T. M. (1985). Interacting Particle Systems.
Springer.
Lobel, I. and Sadler, E. (2012). Social learning and aggre-
gate network uncertainty. Working Paper.
Mathis, D. W. and Mozer, M. C. (1994). On the computa-
tional utility of consciousness. In Proceedings of the
7th International Conference on Neural Information
Processing Systems (NIPS’94), pages 11–18.
Mednick, S. (1962). The associative basis of the creative
process. Psychological Review, 69(3):220–232.
Mendoza, M., Poblete, B., and Castillo, C. (2010). Twitter
under crisis: Can we trust what we rt? In Proceed-
ings of the First Workshop on Social Media Analytics,
pages 71–79.
Mueller-Frank, M. (2013). A general framework for ra-
tional learning in social networks. Theoretical Eco-
nomics, 8:1–40.
Oliveira, D. F. M. and Chan, K. S. (2018). The effects of
trust and influence on the spreading of low and high
quality information. Physica A, 525:657–663.
Paulus, P. B. (2002). Social and cognitive influences
in group brainstorming. predicting production gains
and losses. European Review of Social Psychology,
12:299–325.
Reber, A. S. (1967). Implicit learning of artificial gram-
mars. Journal of Verbal Learning and Verbal Behav-
ior, 6(6):855 – 863.
ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence
114