physical behaviour data for clustering profiles by
adding on information such as the intensity, frequency
and duration of the activity bouts. The guidelines on
physical activity make it evident that there is a ne-
cessity to develop recommendations that address the
links amongst the type, duration, intensity, frequency
and the total amount of physical activity necessary
to be done by an individual in order to prevent non-
communicable diseases and general health issues. We
will extend our work to address this challenge by us-
ing similarity-based clustering to determine more spe-
cialized clusters and attempt to steer towards identify-
ing the physical behaviour phenotypes in our dataset.
REFERENCES
Aamodt, A. and Plaza, E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. Artificial Intelligence Communi-
cations, 7(1).
Adam, A. and Blockeel, H. (2015). Dealing with overlap-
ping clustering: A constraint-based approach to algo-
rithm selection. CEUR Workshop Proceedings, 1455.
Baretta, D., Sartori, F., Greco, A., D’Addario, M., Melen,
R., and Steca, P. (2019). Improving physical activ-
ity mhealth interventions: Development of a computa-
tional model of self-efficacy theory to define adaptive
goals for exercise promotion. Advances in Human-
Computer Interaction, 2019.
Coenen, P., Willenberg, L., Parry, S., Shi, J. W., Romero, L.,
Blackwood, D. M., Maher, C. G., Healy, G. N., Dun-
stan, D. W., and Straker, L. M. (2018). Associations
of occupational standing with musculoskeletal symp-
toms: a systematic review with meta-analysis. British
Journal of Sports Medicine, 52(3).
Cunningham, P. (2009). A taxonomy of similarity mecha-
nisms for case-based reasoning. IEEE Trans. Knowl.
Data Eng., 21.
Ekelund, U., Brown, W. J., Steene-Johannessen, J., Fager-
land, M. W., Owen, N., Powell, K. E., Bauman, A. E.,
and Lee, I.-M. (2019). A systematic review and har-
monised meta-analysis of data from 850 060 partici-
pants. British Journal of Sports Medicine, 53(14).
Fanoiki, T. O., Drummond, I., and Sandri, S. A. (2010).
Case-based reasoning retrieval and reuse using case
resemblance hypergraphs. In International Confer-
ence on Fuzzy Systems.
Howie, E. K., Smith, A. L., McVeigh, J. A., and Straker,
L. M. (2018). Accelerometer-derived activity pheno-
types in young adults: a latent class analysis. Interna-
tional Journal of Behavioral Medicine, 25(5).
Lagersted-Olsen, J., Korshøj, M., Skotte, J., Carneiro, I. G.,
Søgaard, K., and Holtermann, A. (2013). Comparison
of objectively measured and self-reported time spent
sitting. International journal of sports medicine, 35 6.
Lucca, M. R. B., Junior, A. G. L., de Freitas, E. P., and Silva,
L. A. L. (2018). A case-based reasoning and clus-
tering framework for the development of intelligent
agents in simulation systems. In FLAIRS, Florida.
MacQueen, J. (1967). Some methods for classification and
analysis of multivariate observations. Berkeley, Calif.
University of California Press.
Marschollek, M. (2013). A semi-quantitative method to de-
note generic physical activity phenotypes from long-
term accelerometer data – the atlas index. PLOS ONE,
8(5).
M
¨
uller, G. and Bergmann, R. (2014). A cluster-based
approach to improve similarity-based retrieval for
process-oriented case-based reasoning. ECAI’14. IOS
Press.
O’Driscoll, R., Turicchi, J., Beaulieu, K., Scott, S., Matu,
J., Deighton, K., Finlayson, G., and Stubbs, J. (2018).
How well do activity monitors estimate energy expen-
diture? a systematic review and meta-analysis of the
validity of current technologies. British journal of
sports medicine.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12.
Saunders, T. J., Larouche, R., Colley, R. C., and Tremblay,
M. S. (2012). Acute sedentary behaviour and markers
of cardiometabolic risk: a systematic review of inter-
vention studies. Journal of nutrition and metabolism.
Singh, K., Malik, D., and Sharma, N. (2011). Evolving
limitations in k-means algorithm in data mining and
their removal. International Journal of Computational
Engineering and Management, 12.
Smyth, B. and Cunningham, P. (2017). Running with cases:
A cbr approach to running your best marathon. In
Aha, D. W. and Lieber, J., editors, CBR Research and
Development, Cham. Springer.
Stahl, A. and Roth-Berghofer, T. R. (2008). Rapid proto-
typing of cbr applications with the open source tool
mycbr. In ECCBR ’08. Springer-Verlag.
Verma, D., Bach, K., and Mork, P. J. (2018). Modelling
similarity for comparing physical activity profiles - a
data-driven approach. In Cox, M. T., Funk, P., and
Begum, S., editors, CBR Research and Development,
Cham. Springer.
Wiratunga, N., Craw, S., and Massie, S. (2003). Index
driven selective sampling for cbr. In Ashley, K. D.
and Bridge, D. G., editors, CBR Research and Devel-
opment. Springer.
Yang, Z., Cor, J., er, and Oja, E. (2016). Low-rank doubly
stochastic matrix decomposition for cluster analysis.
Journal of Machine Learning Research, 17(187).
Clustering of Physical Behaviour Profiles using Knowledge-intensive Similarity Measures
667