Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., and
Laleci, G. B. (2005). A survey and analysis of elec-
tronic healthcare record standards. Acm Computing
Surveys (Csur), 37(4):277–315.
El Fadly, A., Daniel, C., Bousquet, C., Dart, T., Lastic,
P.-Y., and Degoulet, P. (2007). Electronic healthcare
record and clinical research in cardiovascular radiol-
ogy. hl7 cda and cdisc odm interoperability. In AMIA
Annual Symposium Proceedings, volume 2007, page
216. American Medical Informatics Association.
El-Sappagh, S., Ali, F., Hendawi, A., Jang, J.-H., and
Kwak, K.-S. (2019). A mobile health monitoring-and-
treatment system based on integration of the ssn sen-
sor ontology and the hl7 fhir standard. BMC medical
informatics and decision making, 19(1):97.
Gay, V. and Leijdekkers, P. (2015). Bringing health and fit-
ness data together for connected health care: mobile
apps as enablers of interoperability. Journal of medi-
cal Internet research, 17(11):e260.
Genitsaridi, I., Kondylakis, H., Koumakis, L., Marias, K.,
and Tsiknakis, M. (2015). Evaluation of personal
health record systems through the lenses of ec re-
search projects. Computers in biology and medicine,
59:175–185.
Gkoutos, G. V., Schofield, P. N., and Hoehndorf, R. (2012).
The units ontology: a tool for integrating units of mea-
surement in science. Database, 2012.
Goldfain, A., Smith, B., Arabandi, S., Brochhausen, M.,
and Hogan, W. R. (2011). Vital sign ontology.
Grenon, P., Smith, B., and Goldberg, L. (2004). Biody-
namic ontology: applying bfo in the biomedical do-
main. Studies in health technology and informatics,
pages 20–38.
Hong, N., Wen, A., Shen, F., Sohn, S., Liu, S., Liu, H., and
Jiang, G. (2018). Integrating structured and unstruc-
tured ehr data using an fhir-based type system: A case
study with medication data. AMIA Summits on Trans-
lational Science Proceedings, 2018:74.
Kilic, O. and Dogac, A. (2009). Achieving clinical
statement interoperability using r-mim and archetype-
based semantic transformations. IEEE Transac-
tions on Information Technology in Biomedicine,
13(4):467–477.
Kumar, R. B., Goren, N. D., Stark, D. E., Wall, D. P.,
and Longhurst, C. A. (2016). Automated integra-
tion of continuous glucose monitor data in the elec-
tronic health record using consumer technology. Jour-
nal of the American Medical Informatics Association,
23(3):532–537.
Maharatna, K. and Bonfiglio, S. (2013). Systems Design
for Remote Healthcare. Springer Science & Business
Media.
Mart
´
ınez-Costa, C., Kalra, D., and Schulz, S. (2014). Im-
proving ehr semantic interoperability: future vision
and challenges. In MIE, pages 589–593.
Mellish, C. (1989). Natural Language Processing in Pro-
log: an introduction to computational linguistics.
Addison-Wesley.
Menachemi, N. and Collum, T. H. (2011). Benefits and
drawbacks of electronic health record systems. Risk
management and healthcare policy, 4:47.
Mori, A. R. and Consorti, F. (1998). Exploiting the ter-
minological approach from cen/tc251 and galen to
support semantic interoperability of healthcare record
systems. International journal of medical informatics,
48(1-3):111–124.
Mori, A. R., Consorti, F., and Galeazzi, E. (1998). Stan-
dards to support development of terminological sys-
tems for healthcare telematics. Methods of Informa-
tion in Medicine, 37(04/05):551–563.
Peng, C. and Goswami, P. (2019). Meaningful integration
of data from heterogeneous health services and home
environment based on ontology. Sensors, 19(8):1747.
Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges,
A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K.,
Jonckers, V., and De Bosschere, K. (2004). Towards
an extensible context ontology for ambient intelli-
gence. In European Symposium on Ambient Intelli-
gence, pages 148–159. Springer.
Rasmussen-Torvik, L. J., Stallings, S. C., Gordon, A. S.,
Almoguera, B., Basford, M. A., Bielinski, S. J., Braut-
bar, A., Brilliant, M., Carrell, D. S., Connolly, J.,
et al. (2014). Design and anticipated outcomes of the
emerge-pgx project: a multicenter pilot for preemp-
tive pharmacogenomics in electronic health record
systems. Clinical Pharmacology & Therapeutics,
96(4):482–489.
Sun, H., Depraetere, K., De Roo, J., Mels, G., De Vloed, B.,
Twagirumukiza, M., and Colaert, D. (2015). Semantic
processing of ehr data for clinical research. Journal of
biomedical informatics, 58:247–259.
Tagaris, A., Chondrogiannis, E., Andronikou, V., Tsatsa-
ronis, G., Mourtzoukos, K., Roumier, J., Matska-
nis, N., Schroeder, M., Massonet, P., Koutsouris, D.,
et al. (2012). Semantic interoperability between clin-
ical research and healthcare: the ponte approach. In
Extended Semantic Web Conference, pages 191–203.
Springer.
Vuppalapati, C., Ilapakurti, A., and Kedari, S. (2016). The
role of big data in creating sense ehr, an integrated
approach to create next generation mobile sensor and
wearable data driven electronic health record (ehr).
In 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (Big-
DataService), pages 293–296. IEEE.
Wang, X., Zhang, D., Gu, T., Pung, H. K., et al. (2004).
Ontology based context modeling and reasoning us-
ing owl. In Percom workshops, volume 18, page 22.
Citeseer.
Weber, G. M., Murphy, S. N., McMurry, A. J., MacFad-
den, D., Nigrin, D. J., Churchill, S., and Kohane, I. S.
(2009). The shared health research information net-
work (shrine): a prototype federated query tool for
clinical data repositories. Journal of the American
Medical Informatics Association, 16(5):624–630.
A Flexible Semantic Integration Framework for Fully-integrated EHR based on FHIR Standard
691