Bartlett, M. S., Viola, P. A., Sejnowski, T. J., Golomb, B. A.,
Larsen, J., Hager, J. C., and Ekman, P. (1996). Classi-
fying facial action. In Advances in neural information
processing systems, pages 823–829.
Bigi, B. (2015). SPPAS - multi-lingual approaches to the
automatic annotation of speech. The Phonetician,
111-112(ISSN:0741-6164):54–69.
Bone, D., Lee, C.-C., and Narayanan, S. (2014). Robust
Unsupervised Arousal Rating: A Rule-Based Frame-
work with Knowledge-Inspired Vocal Features. IEEE
transactions on affective computing, 5(2):201–213.
Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M.
(2015). Time series analysis: forecasting and control.
John Wiley & Sons.
Chen, H., Liao, Y., Jan, H., Kuo, L., and Lee, C. (2016).
A Gaussian mixture regression approach toward mod-
eling the affective dynamics between acoustically-
derived vocal arousal score (VC-AS) and internal
brain fMRI bold signal response. In 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5775–5779.
DeSouza, J. F., Ovaysikia, S., and Pynn, L. K. (2012). Cor-
relating Behavioral Responses to fMRI Signals from
Human Prefrontal Cortex: Examining Cognitive Pro-
cesses Using Task Analysis. Journal of Visualized Ex-
periments : JoVE, (64).
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen,
L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox,
P. T., Eickhoff, S. B., Yu, C., and Jiang, T. (2016).
The Human Brainnetome Atlas: A New Brain Atlas
Based on Connectional Architecture. Cereb Cortex,
26(8):3508–3526.
Gössl, C., Fahrmeir, L., and Auer, D. (2001). Bayesian
modeling of the hemodynamic response function in
bold fmri. NeuroImage, 14(1):140–148.
Gravano, A., Hirschberg, J., and Be
ˇ
nuš, Š. (2011). Affir-
mative cue words in task-oriented dialogue. Compu-
tational Linguistics, 38(1):1–39.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Machine learning, 46(1-3):389–422.
Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen,
F. E., and Gallant, J. L. (2016). Natural speech reveals
the semantic maps that tile human cerebral cortex. Na-
ture, 532(7600):453–458.
Johansen, S. (1991). Estimation and hypothesis testing of
cointegration vectors in gaussian vector autoregres-
sive models. Econometrica: journal of the Econo-
metric Society, pages 1551–1580.
Kanwisher, N. and Yovel, G. (2006). The fusiform face
area: a cortical region specialized for the perception of
faces. Philosophical Transactions of the Royal Society
B: Biological Sciences, 361(1476):2109–2128.
Kasper, L., Bollmann, S., Diaconescu, A. O., Hutton, C.,
Heinzle, J., Iglesias, S., Hauser, T. U., Sebold, M.,
Manjaly, Z.-M., Pruessmann, K. P., and Stephan, K. E.
(2017). The PhysIO Toolbox for Modeling Physio-
logical Noise in fMRI Data. Journal of Neuroscience
Methods, 276:56–72.
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., and De-
haene, S. (2009). Recruitment of an Area Involved in
Eye Movements During Mental Arithmetic. Science,
324(5934):1583–1585.
Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang,
K.-M., Malave, V. L., Mason, R. A., and Just,
M. A. (2008). Predicting Human Brain Activity
Associated with the Meanings of Nouns. Science,
320(5880):1191–1195.
Ochs, M., Jain, S., and Blache, P. (2018). Toward an auto-
matic prediction of the sense of presence in virtual re-
ality environment. In Proceedings of the 6th Interna-
tional Conference on Human-Agent Interaction, pages
161–166. ACM.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. Journal of ma-
chine learning research, 12(Oct):2825–2830.
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J.,
and Nichols, T. E. (2011). Statistical Parametric Map-
ping: The Analysis of Functional Brain Images. Else-
vier.
Rauchbauer Birgit, Nazarian Bruno, Bourhis Morgane,
Ochs Magalie, Prévot Laurent, and Chaminade
Thierry (2019). Brain activity during reciprocal
social interaction investigated using conversational
robots as control condition. Philosophical Trans-
actions of the Royal Society B: Biological Sciences,
374(1771):20180033.
Schiffrin, D. (1987). Discourse markers. Number 5. Cam-
bridge University Press.
Smedt, T. D. and Daelemans, W. (2012). Pattern for
python. Journal of Machine Learning Research,
13(Jun):2063–2067.
Tipping, M. E. and Bishop, C. M. (1999). Probabilistic prin-
cipal component analysis. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology),
61(3):611–622.
Whitfield-Gabrieli, S. and Nieto-Castanon, A. (2012).
Conn: A Functional Connectivity Toolbox for Corre-
lated and Anticorrelated Brain Networks. Brain Con-
nectivity, 2(3):125–141.
Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E., and
Braver, T. S. (2009). BOLD Correlates of Trial-by-
Trial Reaction Time Variability in Gray and White
Matter: A Multi-Study fMRI Analysis. PLOS ONE,
4(1):e4257.
ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods
360