and began to shift to the areas of "saturated
landscape complexity".
The results of this work can be used to
understand the selection algorithms for the
navigational behavior of birds, other animals, or
humans.
REFERENCES
Biro, D. et al. (2007) ‘Pigeons combine compass and
landmark guidance in familiar route navigation’,
Proceedings of the National Academy of Sciences,
104(18), pp. 7471–7476. doi:
10.1073/pnas.0701575104.
Blaser, N. et al. (2013) ‘Testing cognitive navigation in
unknown territories: homing pigeons choose different
targets’, Journal of Experimental Biology, 216(16),
pp. 3123–3131. doi: 10.1242/jeb.083246.
Essaid, H. I. (1990) ‘A multilayered sharp interface model
of coupled freshwater and saltwater flow in coastal
systems: Model development and application’, Water
Resources Research. doi:
10.1029/WR026i007p01431.
Essaid, H. I., Bekins, B. A. and Cozzarelli, I. M. (2015)
‘Organic contaminant transport and fate in the
subsurface: Evolution of knowledge and
understanding’, Water Resources Research. doi:
10.1002/2015WR017121.
Ferrari, S. et al. (2018) ‘The Ring Vortex: A Candidate for
a Liquid-Based Complex Flow Phantom for Medical
Imaging’, in Tavares, J. M. R. S. and Natal Jorge, R.
M. (eds) VipIMAGE 2017. Cham: Springer
International Publishing, pp. 893–902. doi:
10.1007/978-3-319-68195-5_97.
Gallien, T. et al. (2018) ‘Coastal Flood Modeling
Challenges in Defended Urban Backshores’,
Geosciences, 8(12), p. 450. doi:
10.3390/geosciences8120450.
Graser, A. et al. (2019) ‘Untangling origin-destination
flows in geographic information systems’, Information
Visualization, 18(1), pp. 153–172. doi:
10.1177/1473871617738122.
Kano, F. et al. (2018) ‘Head-mounted sensors reveal
visual attention of free-flying homing pigeons’, The
Journal of Experimental Biology, 221(17), p.
jeb183475. doi: 10.1242/jeb.183475.
Lipp, H.-P. et al. (2004) ‘Pigeon Homing along Highways
and Exits’, Current Biology. England, 14(14), pp.
1239–1249. doi: 10.1016/j.cub.2004.07.024.
Mann, R. P. et al. (2014) ‘Landscape complexity
influences route-memory formation in navigating
pigeons’, Biology Letters, 10(1), pp. 20130885–
20130885. doi: 10.1098/rsbl.2013.0885.
Pettit, B et al. (2012) ‘Data from: Not just passengers:
Pigeons, Columba livia, can learn homing routes while
flying with a more experienced conspecific’,
Proceedings of the Royal Society B. Dryad Digital
Repository. doi: 10.5061/dryad.53f4b.
Pettit, Benjamin et al. (2012) ‘Not just passengers:
pigeons, Columba livia, can learn homing routes while
flying with a more experienced conspecific’,
Proceedings of the Royal Society B: Biological
Sciences, 280(1750), pp. 20122160–20122160. doi:
10.1098/rspb.2012.2160.
Rispoli, V. C. et al. (2015) ‘Computational fluid dynamics
simulations of blood flow regularized by 3D phase
contrast MRI.’, Biomedical engineering online.
BioMed Central, 14(1), p. 110. doi: 10.1186/s12938-
015-0104-7.
Sexton, J. O. et al. (2013) ‘Urban growth of the
Washington, D.C.–Baltimore, MD metropolitan region
from 1984 to 2010 by annual, Landsat-based estimates
of impervious cover’, Remote Sensing of Environment,
129, pp. 42–53. doi: 10.1016/j.rse.2012.10.025.
Stonedahl, S. H. et al. (2010) ‘A multiscale model for
integrating hyporheic exchange from ripples to
meanders’, Water Resources Research, 46(12). doi:
10.1029/2009WR008865.
Vyssotski, A. L. et al. (2009) ‘EEG Responses to Visual
Landmarks in Flying Pigeons’, Current Biology.
Elsevier Ltd, 19(14), pp. 1159–1166. doi:
10.1016/j.cub.2009.05.070.
Wiltschko, R. and Wiltschko, W. (2015) ‘Avian
Navigation: A Combination of Innate and Learned
Mechanisms’, in Advances in the Study of Behavior.
Elsevier Ltd, pp. 229–310. doi:
10.1016/bs.asb.2014.12.002.
Winter, T. C. et al. (1998) ‘Ground Water and Surface
Water - A single Resource - U.S. Geological Survey
Circular 1139’, USGS Publications. doi:
10.3133/CIR1139.
Identification of Sustainable Locations in Pigeon Flights using Flow Simulation Method