ACKNOWLEDGEMENTS 
The research accounted for in this paper is co-funded 
by the European Regional Development Fund 
(ERDF) (project No.  1.2.1.1/18/A/003). 
REFERENCES 
Avinash M, & Sivasankar E. (2019). A Study of Feature 
Extraction techniques for Sentiment Analysis. 1–12. 
Bayyapu, K. R., & Dolog, P. (2010). Tag and Neighbour 
Based Recommender System for Medical Events. 
Proceedings of the First International Workshop on 
Web Science and Information Exchange in the Medical 
Web, MedEx 2010, 14–24. APA. 
Ciapetti, A., Florio, R. Di, Lomasto, L., Miscione, G., 
Ruggiero, G., & Toti, D. (2019). NETHIC: A System for 
Automatic Text Classification using Neural Networks 
and Hierarchical Taxonomies. 296–306. 
Dinh, D., & Tamine, L. (2012). Towards a context sensitive 
approach to searching information based on domain 
specific knowledge sources. Journal of Web Semantics, 
12–13, 41–52. 
https://doi.org/10.1016/J.WEBSEM.2011.11.009 
Faggella, D. (2019). What is Machine Learning? Retrieved 
October 10, 2019, from https://emerj.com/ai-glossary-
terms/what-is-machine-learning/ 
Fu, M., Qu, H., Huang, L., & Lu, L. (2018). Bag of meta-
words: A novel method to represent document for the 
sentiment classification. Expert Systems with 
Applications,  113, 33–43. 
https://doi.org/10.1016/J.ESWA.2018.06.052 
Intelligent Document Processing Platform - ABBYY 
FlexiCapture. (2019). 
Jacovi, A., Sar Shalom, O., & Goldberg, Y. (2019). 
Understanding Convolutional Neural Networks for 
Text Classification. 56–65. 
https://doi.org/10.18653/v1/w18-5408 
Johnson, R., & Zhang, T. (2014). Effective Use of Word 
Order for Text Categorization with Convolutional 
Neural Networks. 
Kadhim, A. I. (2019). Survey on supervised machine 
learning techniques for automatic text classification. 
Artificial Intelligence Review,  52(1), 273–292. 
https://doi.org/10.1007/s10462-018-09677-1 
Kadriu, A., Abazi, L., & Abazi, H. (2019). Albanian Text 
Classification: Bag of Words Model and Word 
Analogies. Business Systems Research Journal, 10(1), 
74–87. https://doi.org/10.2478/bsrj-2019-0006 
Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J., 
& Rajabi, M. J. (2014). Advantage and drawback of 
support vector machine functionality. I4CT 2014 - 1st 
International Conference on Computer, 
Communications, and Control Technology, 
Proceedings, 63–65. 
https://doi.org/10.1109/I4CT.2014.6914146 
Kolle, P., Bhagat, S., Zade, S., Dand, B., & Lifna, C. S. 
(2018). Ontology based Domain Dictionary. 2018 
International Conference on Smart City and Emerging 
Technology (ICSCET), 1–4. 
https://doi.org/10.1109/ICSCET.2018.8537346 
Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., 
Barnes, L. E., & Brown, D. E. (2019). Text 
Classification Algorithms: A Survey. Information 
(Switzerland),  10(4). 
https://doi.org/10.3390/info10040150 
Lauren, P., Qu, G., Zhang, F., & Lendasse, A. (2018). 
Discriminant document embeddings with an extreme 
learning machine for classifying clinical narratives. 
Neurocomputing,  277, 129–138. 
https://doi.org/10.1016/J.NEUCOM.2017.01.117 
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. 
Nature,  521(7553), 436–444. 
https://doi.org/10.1038/nature14539 
Lin, R., Fu, C., Mao, C., Wei, J., & Li, J. (2019). Academic 
News Text Classification Model Based on Attention 
Mechanism and RCNN. https://doi.org/10.1007/978-
981-13-3044-5_38 
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. 
Y., & Potts, C. (2016). Learning Word Vectors for 
Sentiment Analysis Andrew. European Review for 
Medical and Pharmacological Sciences, (January 
2011), 9. https://doi.org/10.1155/2015/915087 
Pahwa, B., Taruna, S., & Kasliwal, N. (2018). Sentiment 
Analysis- Strategy for Text Pre-Processing. 
International Journal of Computer Applications, 
180(34), 15–18. 
https://doi.org/10.5120/ijca2018916865 
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment 
Analysis: Foundations and Trends in Information 
Retrieval.  2(1–2), 1–135. 
https://doi.org/10.1561/1500000011 
Porter, M. F. (2006). An algorithm for suffix stripping. 
Program,  40(3), 211–218. 
https://doi.org/10.1108/00330330610681286 
Saif, H., Fernandez, M., He, Y., & Alani, H. (n.d.). On 
Stopwords, Filtering and Data Sparsity for Sentiment 
Analysis of Twitter. 
Serimag - Artificial Intelligence for document automation. 
(2007). 
Shawon, A., Zuhori, S. T., Mahmud, F., & Rahman, J. 
(2018). Website Classification Using Word Based 
Multiple N-Gram Models And Random Search 
Oriented Feature Parameters. 2018 21st International 
Conference of Computer and Information Technology 
(ICCIT), (21-23 December), 1–6. 
https://doi.org/10.1109/ICCITECHN.2018.8631907 
Stein, R. A., Jaques, P. A., & Valiati, J. F. (2018). An 
Analysis of Hierarchical Text Classification Using 
Word Embeddings. 
https://doi.org/10.1016/j.ins.2018.09.001 
Tam Hoang, D. (2014). Sentiment Analysis: Polarity 
Dataset. Charles University in Prague. 
Wei, F., Qin, H., Ye, S., & Zhao, H. (2018). Empirical 
Study of Deep Learning for Text Classification in Legal 
Document Review. 2018 IEEE International