ACKNOWLEDGEMENTS
The research accounted for in this paper is co-funded
by the European Regional Development Fund
(ERDF) (project No. 1.2.1.1/18/A/003).
REFERENCES
Avinash M, & Sivasankar E. (2019). A Study of Feature
Extraction techniques for Sentiment Analysis. 1–12.
Bayyapu, K. R., & Dolog, P. (2010). Tag and Neighbour
Based Recommender System for Medical Events.
Proceedings of the First International Workshop on
Web Science and Information Exchange in the Medical
Web, MedEx 2010, 14–24. APA.
Ciapetti, A., Florio, R. Di, Lomasto, L., Miscione, G.,
Ruggiero, G., & Toti, D. (2019). NETHIC: A System for
Automatic Text Classification using Neural Networks
and Hierarchical Taxonomies. 296–306.
Dinh, D., & Tamine, L. (2012). Towards a context sensitive
approach to searching information based on domain
specific knowledge sources. Journal of Web Semantics,
12–13, 41–52.
https://doi.org/10.1016/J.WEBSEM.2011.11.009
Faggella, D. (2019). What is Machine Learning? Retrieved
October 10, 2019, from https://emerj.com/ai-glossary-
terms/what-is-machine-learning/
Fu, M., Qu, H., Huang, L., & Lu, L. (2018). Bag of meta-
words: A novel method to represent document for the
sentiment classification. Expert Systems with
Applications, 113, 33–43.
https://doi.org/10.1016/J.ESWA.2018.06.052
Intelligent Document Processing Platform - ABBYY
FlexiCapture. (2019).
Jacovi, A., Sar Shalom, O., & Goldberg, Y. (2019).
Understanding Convolutional Neural Networks for
Text Classification. 56–65.
https://doi.org/10.18653/v1/w18-5408
Johnson, R., & Zhang, T. (2014). Effective Use of Word
Order for Text Categorization with Convolutional
Neural Networks.
Kadhim, A. I. (2019). Survey on supervised machine
learning techniques for automatic text classification.
Artificial Intelligence Review, 52(1), 273–292.
https://doi.org/10.1007/s10462-018-09677-1
Kadriu, A., Abazi, L., & Abazi, H. (2019). Albanian Text
Classification: Bag of Words Model and Word
Analogies. Business Systems Research Journal, 10(1),
74–87. https://doi.org/10.2478/bsrj-2019-0006
Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J.,
& Rajabi, M. J. (2014). Advantage and drawback of
support vector machine functionality. I4CT 2014 - 1st
International Conference on Computer,
Communications, and Control Technology,
Proceedings, 63–65.
https://doi.org/10.1109/I4CT.2014.6914146
Kolle, P., Bhagat, S., Zade, S., Dand, B., & Lifna, C. S.
(2018). Ontology based Domain Dictionary. 2018
International Conference on Smart City and Emerging
Technology (ICSCET), 1–4.
https://doi.org/10.1109/ICSCET.2018.8537346
Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S.,
Barnes, L. E., & Brown, D. E. (2019). Text
Classification Algorithms: A Survey. Information
(Switzerland), 10(4).
https://doi.org/10.3390/info10040150
Lauren, P., Qu, G., Zhang, F., & Lendasse, A. (2018).
Discriminant document embeddings with an extreme
learning machine for classifying clinical narratives.
Neurocomputing, 277, 129–138.
https://doi.org/10.1016/J.NEUCOM.2017.01.117
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521(7553), 436–444.
https://doi.org/10.1038/nature14539
Lin, R., Fu, C., Mao, C., Wei, J., & Li, J. (2019). Academic
News Text Classification Model Based on Attention
Mechanism and RCNN. https://doi.org/10.1007/978-
981-13-3044-5_38
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A.
Y., & Potts, C. (2016). Learning Word Vectors for
Sentiment Analysis Andrew. European Review for
Medical and Pharmacological Sciences, (January
2011), 9. https://doi.org/10.1155/2015/915087
Pahwa, B., Taruna, S., & Kasliwal, N. (2018). Sentiment
Analysis- Strategy for Text Pre-Processing.
International Journal of Computer Applications,
180(34), 15–18.
https://doi.org/10.5120/ijca2018916865
Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment
Analysis: Foundations and Trends in Information
Retrieval. 2(1–2), 1–135.
https://doi.org/10.1561/1500000011
Porter, M. F. (2006). An algorithm for suffix stripping.
Program, 40(3), 211–218.
https://doi.org/10.1108/00330330610681286
Saif, H., Fernandez, M., He, Y., & Alani, H. (n.d.). On
Stopwords, Filtering and Data Sparsity for Sentiment
Analysis of Twitter.
Serimag - Artificial Intelligence for document automation.
(2007).
Shawon, A., Zuhori, S. T., Mahmud, F., & Rahman, J.
(2018). Website Classification Using Word Based
Multiple N-Gram Models And Random Search
Oriented Feature Parameters. 2018 21st International
Conference of Computer and Information Technology
(ICCIT), (21-23 December), 1–6.
https://doi.org/10.1109/ICCITECHN.2018.8631907
Stein, R. A., Jaques, P. A., & Valiati, J. F. (2018). An
Analysis of Hierarchical Text Classification Using
Word Embeddings.
https://doi.org/10.1016/j.ins.2018.09.001
Tam Hoang, D. (2014). Sentiment Analysis: Polarity
Dataset. Charles University in Prague.
Wei, F., Qin, H., Ye, S., & Zhao, H. (2018). Empirical
Study of Deep Learning for Text Classification in Legal
Document Review. 2018 IEEE International