ACKNOWLEDGEMENTS
This work has been partially funded by the French
ANR-17-CE39-0006 project BioQOP.
REFERENCES
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. (2016). Deep
learning with differential privacy. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS’16.
Akhtar, N. and Mian, A. (2018). Threat of adversarial at-
tacks on deep learning in computer vision: A survey.
arXiv preprint arXiv:1801.00553.
An, G. (1996). The effects of adding noise during back-
propagation training on a generalization performance.
Neural Computation, 8(3):643–674.
Audhkhasi, K., Osoba, O., and Kosko, B. (2016). Noise-
enhanced convolutional neural networks. Neural Net-
works, 78:15 – 23. Special Issue on ”Neural Network
Learning in Big Data”.
Batina, L., Bhasin, S., Jap, D., and Picek, S. (2019). CSI
NN: Reverse engineering of neural network architec-
tures through electromagnetic side channel. In 28th
USENIX Security Symposium (USENIX Security 19),
pages 515–532, Santa Clara, CA. USENIX Associa-
tion.
Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R.
(2012). Advances in optimizing recurrent networks.
arXiv:1212.0901.
Bishop, C. M. (1995). Training with noise is equiva-
lent to tikhonov regularization. Neural Computation,
7(1):108–116.
Coskun, M., Uc¸ar, A., Yildirim,
¨
O., and Demir, Y. (2017).
Face recognition based on convolutional neural net-
work,. ” International Conference on Modern Elec-
trical and Energy Systems, pages 376–379.
Deb, D., Zhang, J., and Jain, A. K. (2019). Advfaces: Ad-
versarial face synthesis.
Dong, Y., Su, H., Wu, B., Li, Z., Liu, W., Zhang,
T., and Zhu, J. (2019). Efficient decision-based
black-box adversarial attacks on face recognition.
arXiv:1904.04433.
Duddu, V., Samanta, D., Rao, D. V., and Balas, V. E. (2018).
Stealing neural networks via timing side channels.
CoRR, abs/1812.11720.
Gildenblat, J. (2017). Grad-cam implementation in keras.
Gu, S. and Rigazio, L. (2014). Towards deep neural network
architectures robust to adversarial examples.
Hong, S., Davinroy, M., Kaya, Y., Locke, S. N., Rackow,
I., Kulda, K., Sachman-Soled, S., and Dumitras, T.
(2018). Security analysis of deep neural networks op-
erating in the presence of cache side-channel attacks.
CoRR, abs/1810.03487.
Inc., A. (2017). Face id security. white paper.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. arXiv:1502.03167.
J. T. Springenberg, A. Dosovitskiy, T. B. and Riedmiller, M.
(2014). Striving for simplicity: The all convolutional
net. arXiv preprint arXiv:1412.6806.
K. Simonyan, A. V. and Zisserman, A. (2014). Deep inside
convolutional networks: Visualising image classifica-
tion models and saliency maps. CoRR, abs/1412.6806.
Kingma, D. P. and Ba, J. L. (2017). Adam: A method for
stochastic optimization. arXiv:1412.6980.
Krizhevsky, A., Sustskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. Advances in neural information process-
ing systems, pages 1097–1105.
Mahendran, A. and Vedaldi, A. (2016). Visualizing
deep convolutional neural networks using natural pre-
images. International Journal of Computer Vision,
pages 1–23.
Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser,
L., Kurach, K., and Martens, J. (2015). Adding gradi-
ent noise improves learning for very deep networks.
Oh, S. J., Augustin, M., Schiele, B., and Fritz, M. (2018).
Towards reverse-engineering black-box neural net-
works. International Conference on Learning Rep-
resentations.
Scherer, D., M
¨
uller, A., and Behnke, S. (2010). Evalua-
tion of pooling operations in convolutional architec-
tures for object recognition. pages 92–101.
Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. (2016). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. CoRR, abs/1610.02391.
Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K.
(2016). Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In ACM
Conference on Computer and Communications Secu-
rity.
Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, pages 1310–1321, New York,
NY, USA. ACM.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv 1409.1556.
Srivastava, Y., Murali, V., and Dubey, S. R. (2019). A per-
formance comparison of loss functions for deep face
recognition. arXiv preprint arXiv:1901.05903.
Tram
`
er, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. (2016). Stealing machine learning models via
prediction apis. USENIX Security, pages 5–7.
Y. LeCun, L. Bottou, Y. B. and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc.
IEEE.
Yan, M., Fletcher, C. W., and Torillas, J. (2018). Cache
telepathy: Leveraging shared resource attacks to learn
dnn architectures. CoRR, abs/1808.04761.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2015). Learning deep features for discrimi-
native localization.
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
618