REFERENCES
Averbuch, A., Hulata, E., and Zheludev, V. (2004). Identifi-
cation of acoustic signatures for vehicles via reduction
of dimensionality. International Journal of Wavelets,
Multiresolution and Information Processing, 2(1).
Averbuch, A., Hulata, E., Zheludev, V., and Kozlov, I.
(2001). A wavelet packet algorithm for classification
and detection of moving vehicles. Multidimensional
Systems and Signal Processing, 12(1).
Coifman, R. R. and Lafon, S. (2006). Diffusion maps. Ap-
plied and Computational Harmonic Analysis: special
issue on Diffusion Maps and Wavelets, 21:5–30.
D.A.Abraham (2019). Underwater Acoustic Signal Pro-
cessing: Modeling, Detection, and Estimation (Mod-
ern Acoustics and Signal Processing). Springer.
Daubechies, I. (1992). Ten Lectures on Wavelets. Society
for Industrial and Applied Mathematics, Philadelphia,
PA, USA.
Deng, S.-W. and Han, J.-Q. (2016). Towards heart sound
classification without segmentation via autocorrela-
tion feature and diffusion maps. Future Generation
Computer Systems, 60:13 – 21.
Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004).
Spectral grouping using the nystrom method. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 26(2):214–225.
Lafon, S., Keller, Y., and Coifman, R. R. (2006). Data fu-
sion and multicue data matching by diffusion maps.
IEEE Transactions on Pattern Analyss and Machine
Intelligence, 28:1784–1797.
Lafon, S. and Lee, A. (2006). Diffusion maps and coarse-
graining: A unified framework for dimensionality re-
duction, graph partitioning, and data set parameteri-
zation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(9):1393–1403.
Mac, A. O., Gibb, R., Barlow, K. E., Browning, E., Fir-
man, M., and Freeman, R. (2018). Bat detective - deep
learning tools for bat acoustic signal detection. PLoS
Computational Biology, 14(3).
Munich, M. E. (2004). Bayesian subspace methods for
acoustic signature recognition of vehicles. 12th Eu-
ropean Signal Processing Conference, pages 2107–
2110.
Nystr
¨
om, E. J. (1928).
¨
Uber die praktische aufl
¨
osung
von linearen integralgleichungen mit anwendungen
auf randwertaufgaben der potentialtheorie. Commen-
tationes Physico-Mathematicae, 4(15):1–52.
Rabin, N. and Coifman, R. R. (2012). Heterogeneous
datasets representation and learning using diffusion
maps and laplacian pyramids. In Proceedings of the
2012 SIAM International Conference on Data Mining,
pages 189–199.
Schclar, A. (2008). A Diffusion Framework for Dimension-
ality Reduction, pages 315–325. Springer US, Boston,
MA.
Schclar, A. and Averbuch, A. (2015). Diffusion bases di-
mensionality reduction. In Proceedings of the 7th In-
ternational Joint Conference on Computational Intel-
ligence, IJCCI 2015, Lisbon, Portugal, November 12-
14, 2015., pages 151–156.
Schclar, A., Averbuch, A., Hochman, K., Rabin, N., and
Zheludev, V. (2010). A diffusion framework for de-
tection of moving vehicles. Digital Signal Process-
ing,, 20(1):111–122.
Sulam, J., Romano, Y., and Talmon, R. (2017). Dynami-
cal system classification with diffusion embedding for
ecg-based person identification. Signal Processing,
130:403 – 411.
Williams, C. K. I. and Seeger, M. (2000). Using the nystr
¨
om
method to speed up kernel machines. In Proceedings
of the 13th International Conference on Neural Infor-
mation Processing Systems, NIPS’00, pages 661–667,
Cambridge, MA, USA. MIT Press.
Yaan Li and Zhe Chen (2017). Entropy based underwater
acoustic signal detection. In 2017 14th International
Bhurban Conference on Applied Sciences and Tech-
nology (IBCAST), pages 656–660.
A Manifold Learning Framework for the Detection of Cardiac Disorders in Acoustic Signals
197