Deep Reinforcement Learning. In Proc. 32nd Conf. on
Neural Information Processing Systems (NeurIPS).
Ji, Y. and Lafortune, S. (2017). Enforcing Opacity by Pub-
licly Known Edit Functions. In Proc. 56th IEEE An-
nual Conf. on Decision and Control (CDC), pages 12–
15.
Julian, K., Lopez, J., Brush, J., Owen, M., and Kochen-
derfer, M. (2016). Policy Compression for Aircraft
Collision Avoidance Systems. In Proc. 35th Digital
Avionics Systems Conf. (DASC), pages 1–10.
Katz, G. (2013). On Module-Based Abstraction and Re-
pair of Behavioral Programs. In Proc. 19th Int. Conf.
on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), pages 518–535.
Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer,
M. (2017). Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Proc. 29th Int.
Conf. on Computer Aided Verification (CAV), pages
97–117.
Katz, G., Barrett, C., and Harel, D. (2015). Theory-Aided
Model Checking of Concurrent Transition Systems. In
Proc. 15th Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), pages 81–88.
Katz, G., Huang, D., Ibeling, D., Julian, K., Lazarus, C.,
Lim, R., Shah, P., Thakoor, S., Wu, H., Zelji
´
c, A., Dill,
D., Kochenderfer, M., and Barrett, C. (2019a). The
Marabou Framework for Verification and Analysis of
Deep Neural Networks. In Proc. 31st Int. Conf. on
Computer Aided Verification (CAV), pages 443–452.
Katz, G., Marron, A., Sadon, A., and Weiss, G. (2019b).
On-the-Fly Construction of Composite Events in
Scenario-Based Modeling Using Constraint Solvers.
In Proc. 7th Int. Conf. on Model-Driven Engineering
and Software Development (MODELSWARD), pages
143–156.
Kazak, Y., Barrett, C., Katz, G., and Schapira, M. (2019).
Verifying Deep-RL-Driven Systems. In Proc. 1st
ACM SIGCOMM Workshop on Network Meets AI &
ML (NetAI).
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., and Irwin, J. (1997). Aspect-
Oriented Programming. In Proc. 11th European Conf.
on Object-Oriented Programming (ECOOP), pages
220–242.
Mao, H., Alizadeh, M., Menache, I., and Kandula, S.
(2016a). Resource Management with Deep Reinforce-
ment Learning. In Proc. 15th ACM Workshop on Hot
Topics in Networks (HotNets), pages 50–56.
Mao, H., Alizadeh, M., Menache, I., and Kan-
dula, S. (2016b). Resource Management with
Deep Reinforcement Learning: Implementation.
https://github.com/hongzimao/deeprm.
Mao, H., Netravali, R., and Alizadeh, M. (2017). Neural
Adaptive Video Streaming with Pensieve. In Proc.
Conf. of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 197–210.
Marron, A., Arnon, B., Elyasaf, A., Gordon, M.,
Katz, G., Lapid, H., Marelly, R., Sherman, D.,
Szekely, S., Weiss, G., and Harel, D. (2016). Six
(Im)possible Things before Breakfast: Building-
Blocks and Design-Principles for Wise Computing. In
Proc. 19th ACM/IEEE Int. Conf. on Model Driven En-
gineering Languages and Systems (MODELS), pages
94–100.
Nair, V. and Hinton, G. (2010). Rectified Linear Units Im-
prove Restricted Boltzmann Machines. In Proc. 27th
Int. Conf. on Machine Learning (ICML), pages 807–
814.
Phan, D., Yang, J., Grosu, R., Smolka, S., and Stoller, S.
(2017). Collision Avoidance for Mobile Robots with
Limited Sensing and Limited Information about Mov-
ing Obstacles. Journal on Formal Methods in System
Design (FMSD), 51(1):62–68.
Schierman, J., DeVore, M., Richards, N., Gandhi,
N., Cooper, J., Horneman, K., Stoller, S.,
and Smolka, S. (2015). Runtime Assurance
Framework Development for Highly Adap-
tive Flight Control Systems. Technical Report.
https://apps.dtic.mil/docs/citations/AD1010277.
Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., and Dieleman, S.
(2016). Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature, 529(7587):484–
489.
Simonyan, K. and Zisserman, A. (2014). Very
Deep Convolutional Networks for Large-
Scale Image Recognition. Technical Report.
http://arxiv.org/abs/1409.1556.
Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz,
G., and Marron, A. (2017). Distributing Scenario-
Based Models: A Replicate-and-Project Approach. In
Proc. 5th Int. Conf. on Model-Driven Engineering and
Software Development (MODELSWARD), pages 182–
195.
Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz,
G., and Marron, A. (2018). Efficient Distributed Exe-
cution of Multi-Component Scenario-Based Models.
Communications in Computer and Information Sci-
ence (CCIS), 880:449–483.
Sutton, R. and Barto, A. (1998). Introduction to Reinforce-
ment Learning. MIT press Cambridge.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. (2013). Intrigu-
ing Properties of Neural Networks. Technical Report.
http://arxiv.org/abs/1312.6199.
Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
(2018). Formal Security Analysis of Neural Networks
using Symbolic Intervals. In Proc. 27th USENIX Se-
curity Symposium.
Wu, M., Wang, J., Deshmukh, J., and Wang, C.
(2019). Shield Synthesis for Real: Enforcing
Safety in Cyber-Physical Systems. Technical Report.
https://arxiv.org/abs/1908.05402.
Wu, Y., Raman, V., Rawlings, B., Lafortune, S., and Seshia,
S. (2018). Synthesis of Obfuscation Policies to Ensure
Privacy and Utility. Journal of Automated Reasoning,
60(1):107–131.
MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development
136