A Study of Classification of Texts into Categories of Cybersecurity
Incident and Attack with Topic Models
Masahiro Ishii, Satoshi Matsuura, Kento Mori, Masahiko Tomoishi, Yong Jin and Yoshiaki Kitaguchi
Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
Keywords:
Text Classification, Seeded LDA, Topic Models, Data Mining, Cybersecurity Incidents, CERT.
Abstract:
To improve and automate cybersecurity incident handling in security operations centers (SOCs) and com-
puter emergency response teams (CERTs), security intelligences extracted from various internal and external
sources, including incident response playbooks, incident reports in each SOCs and CERTs, the National Vul-
nerability Database, and social media, must be utilized. In this paper, we apply various topic models to classify
text related to cybersecurity intelligence and incidents according to topics derived from incidents and cyber
attacks. We analyze cybersecurity incident reports and related text in our CERT and security blog posts using
naive latent Dirichlet allocation (LDA), seeded LDA, and labeled LDA topic models. Labeling text based on
designated categories is difficult and time-consuming. Training the seeded model does not require text to be
labeled; instead, seed words are given to allow the model to infer topic-word and document-topic distributions
for the text. We show that a seeded topic model can be used to extract and classify intelligence in our CERT,
and we infer text more precisely compared with a supervised topic model.
1 INTRODUCTION
Cybersecurity incidents have become more compli-
cated as cyber attack methods evolve and latent vul-
nerabilities put organizations at risk. To mitigate the
effects and damages caused by such incidents, com-
puter emergency response teams (CERTs) and se-
curity operation centers (SOCs) have to analyze an
enormous number of security alerts generated by se-
curity systems and devices and those stored in vul-
nerability databases. Security information and event
management systems alone cannot protect against cy-
ber threats because they are based on signatures or
rigid rules and are thus insufficiently flexible to de-
tect unknown attacks (Andrade and Torres, 2018).
In addition, the management and customization of
such systems are time-consuming and require exper-
tise (Zhong et al., 2019).
In this paper, we use various topic models to clas-
sify incident reports in our CERT and blog posts by a
security vendor and evaluate their performance using
experiments. We start with a small trial to extract se-
curity intelligence useful incident handling. We focus
on topic models because many data sources related
to security incidents are in natural language form and
the results of classifying text into categories are help-
ful for all CERT members, including non-experts.
The categories are based on incident and cyber at-
tack types. Labeling all training data for predicting
new text with models trained using a supervised algo-
rithm is extremely time-consuming (Li et al., 2018).
We perform experiments to compare a seeded latent
Dirichlet allocation (LDA) topic model with a su-
pervised topic model. For the seeded LDA (SLDA)
model, text does not need to be labeled; instead, seed
words are provided to classify the text into the desig-
nated topic categories. Our experimental results show
that the SLDA topic model can classify our report and
blog posts better than the supervised algorithm. We
also discussed how we set the seed words to enhance
the trained topic model by observing the clustering
results and correlations between the clusters and the
ground truth data
The rest of this paper is organized as follows. Sec-
tion 2 quickly reviews studies on analyzing and uti-
lizing cybersecurity intelligence extracted from data
from various sources. Section 3 describes the LDA-
based topic models used in the experiments. Section 4
presents the data and measures used for experiments
on clustering security text and predicting new text,
and the experimental results. We remark future tasks
and the conclusions in Section 5.
Ishii, M., Matsuura, S., Mori, K., Tomoishi, M., Jin, Y. and Kitaguchi, Y.
A Study of Classification of Texts into Categories of Cybersecurity Incident and Attack with Topic Models.
DOI: 10.5220/0009099606390646
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 639-646
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright
c
2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved
639
2 RELATED WORK
Data mining and machine learning have recently been
applied to social media platforms, forums, and blogs
for extracting security intelligence. Several studies
have analyzed security intelligence and events using
text classification based on machine learning or natu-
ral language processing models.
Deliu et al. (Deliu et al., 2017) performed ex-
periments on text classification using convolutional
neural network (CNN) and support vector machine
(SVM) methods with text data from a hacker forum.
They found that the SVM method outperformed the
CNN method.
Nagai et al. (Nagai et al., 2018) classified secu-
rity blogs from different vendors using a guided-topic
model and a naive LDA model. They also analyzed
cybersecurity events by setting seed words for vari-
ous cyber threat categories.
Chambers et al. (Chambers et al., 2018) proposed
a partially labeled LDA model for detecting early cy-
ber attack discussions on Twitter. They used 2 mil-
lion tweets consisting of data related to distributed
denial-of-service (DDoS) attacks labeled binary value
(attack or non-attack). Neither attack dictionaries nor
seed words were used.
We remark that Nagai et al. (Nagai et al., 2018)
also presented classification results using the SLDA
model for security text. We evaluated not only clus-
tering measurements but also classifying accuracy for
test text. In addition, we tuned the seed words and
evaluated the SLDA model in several steps. We fur-
thermore performed the experiments to compare the
SLDA model with the supervised topic model (la-
beled LDA).
3 TOPIC MODELS AND
PREPROCESSING TEXTS
We adopted topic models based on LDA to analyze
and classify Japanese text. Here, we briefly describe
the features of the topic models and methods used to
preprocess Japanese text for the models.
3.1 Topic Models based on LDA
LDA (Blei et al., 2003) is a basic unsupervised topic
model algorithm that models a document with a mix-
ture of topics. The model generates topic-word and
document-topic distributions automatically, where the
model explicitly assumes that each word is generated
from one underlying topic. Figure 1a shows a graphi-
cal model of LDA. The topic-document distribution θ
and the topic-word distribution ϕ are derived from the
Dirichlet distributions with hyper parameters α and β,
respectively. Then, a topic in documents and a word
in topics are selected based on multinomial distribu-
tions θ and ϕ, respectively
Ramage et al. (Ramage et al., 2009) proposed the
labeled LDA (LLDA), which is a supervised LDA-
based topic model. In this model, document user tags
are associated with latent topics. Figure 1b shows a
graphical model of LLDA. The document-topic dis-
tribution is restrictedly drawn from the Dirichlet dis-
tribution with parameter α using the label set Λ. We
note that LLDA is appropriate for documents with
multiple labels.
SLDA (Jagarlamudi et al., 2012) is a guided-topic
model that uses sets of seed words that users as-
sume represent the underlying topics in a document.
A graphical model of SLDA is shown in Figure 1b.
This model uses seed words to improve the document-
topic distribution by drawing the group variable g and
the topic-word distribution by defining a topic as a
mixture of seed topic distribution ϕ
s
and regular topic
distribution ϕ
r
.
We used the library GuidedLDA (Singh and am-
rrs, 2017) for the above LDA-based models. Guid-
edLDA cannot be completely implemented by fol-
lowing the algorithm described in (Jagarlamudi et al.,
2012, Section 2.3). Therefore, we implemented the
SLDA algorithm based on GuidedLDA. Furthermore,
we added the methods for computing LLDA model
with labels of document on GuidedLDA.
3.2 Preprocessing of Japanese Text
MeCab (Kudo et al., 2004) is one of the most com-
monly used morphological analyzers for Japanese
text. We used MeCab to parse Japanese text and
extract morphemes, which are useful for training
topic models. To extract proper nouns and recog-
nized concepts, we used the dictionary mecab-ipadic-
NEologd
1
, which consists of words extracted from
web resources. Stop words were set to enhance the
topic models. We used the words provided in Sloth-
Lib
2
for Japanese words and those in the Natural Lan-
guage Toolkit (Loper and Bird, 2002) for English
words. We performed basic stemming of words by
using the original form of words and converting the
characters to lowercase and half-width characters for
each Japanese and English word.
Many technical terms and entities appear in
cybersecurity-related text, such as Internet Protocol
(IP) addresses, Uniform Resource Locators (URLs),
1
https://github.com/neologd/mecab-ipadic-neologd
2
http://www.dl.kuis.kyoto-u.ac.jp/slothlib/
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
640
Labeled LDA
LDA Seeded LDA
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
r
<latexit sha1_base64="3Eat2YKfp79/Ch+LOSN/8jqLOlA=">AAACcXicZZHLTsJAFIaHesN6A01MjBsCLExMSKkmbols3JBgIpeEIpmZHmBg2mlmBlNS+zJu9YV8Dl/AFokJ9F+dfGfOnH/+IQFnSlvWd87Y2d3bP8gfmkfHJ6dnheJ5V4mFpNChggvZJ1gBZz50NNMc+oEE7BEOPTJvpv3eG0jFhP+ilwEMPTzx2ZhRrBM0KlxGDhHc9bCemlWHgMavsmrGo0LFqlkrlbJFfV1U0FrtUTHXdFxBFx74mnKs1ADfz4bRDEvNKIfYdBYKAkzneALRyvYmwp5KPSRQgaZi4WuQUQuHLawlC5N3qDiyrcyMWnokA/XU22TpzZiEWSjVWGWpK/QWJWzC/BXUUxASkh1LDpELY+azNMgtD3wiJMvY+MeMbjQGmPNhFC5jM4m9vh1ytujatfpdzX62K43H9Qfk0TUqoxtURw+ogZ5QG3UQRe/oA32ir9yPcWWUjPLfUSO3nrlAGzJufwE0ZsNm</latexit>
r
<latexit sha1_base64="D0ly8UQniO3m1qzXobGx4g21hTw=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Tdzoi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFUucMB</latexit>
s
<latexit sha1_base64="a8ZzrSU5ilyQ6UKTcb7bWcUyE1A=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Td7oi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFWssMC</latexit>
x
<latexit sha1_base64="9OstR+bEV+nDS0Du4O4kvdn618g=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWyMYNCSZySYCQ6fQAA9NOMzMlJU3fxK2+kw/hO9giMSn9V3++M2fOmX+cgFGpTPO7pO3tHxwelY/1k9Oz8wujctmTPBQEuoQzLgYOlsCoD11FFYNBIAB7DoO+s2xl9f4KhKTcf1frAMYenvl0SglWKZoYRjxyOHM9rOZ6ParrycSomQ1zo9uisbamhrbqTCql1sjlJPTAV4RhKYf4aTGOF1goShgk+iiUEGCyxDOINwvnEfZkNj2FEhThoa9AxG0ctbESNEpfIJPYNgs9cu05BajmXp5lN2MnKkIhp7JIXa52qENn1N9ANQcuIJ2xZhC7MKU+zSLc2YHNuKCFNf4xJbnCEDM2jqN1oqexW7shF03PbliPDfvNrjVfth9QRtfoDj0gCz2jJnpFHdRFBK3QB/pEX6UfrapdaTd/R7XStqeKctLufwGgqsDa</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
g
<latexit sha1_base64="1nFScu3gfGuSAdSKUFT2bIRMpmM=">AAACa3icZZHLTsJAFIYP9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAoA9NOMzOQkoY3cavv5EP4DhYkJqX/6s935sw5848bcqa0ZX3njL39g8Oj/LF5cnp2flEoXraVmEuKLSq4kF2XKOQswJZmmmM3lEh8l2PHndXX9c4CpWIieNfLEAc+8QI2ZpToBA0LhbjvCj7yiZ6YFa9iroaFslW1NrrNGntryrBVc1jM1fsjQec+BppyolSPPE0H8ZRIzSjHldmfKwwJnREP483CaUR8tZ6eQIWainmgUcYNEjWIlixKXqBWsWNletTSdzNQT/w0W99M3CgLpRqrLB0JvUNd5rFgA/UEhcRkxpJjPMIxC9g6wp0duCcky6zxjxlNFXqE80EcLVdmEru9G3LWtJ2q/Vh13pxy7WX7AXm4hjt4ABueoQav0IQWUFjAB3zCV+7HKBlXxs3fUSO37SlBSsb9L38hwMk=</latexit>
<latexit sha1_base64="v/mk54zej7fa4CgkUKVzIiJazoo=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckBk0cUtk44YEE7kkQMiZchgK7XTSFsNkwsO41SfyNXwCByQmMP/q5Ds9PX//eiFn2jjOd8ba2t7Z3cvu2weHR8cnufxpU8upotigkkvV9kAjZwE2DDMc26FCEB7HljepLvqtd1SayeDNRCH2BPgBGzIKJkH93Hnc9SQfCDAju9j1QQgo2vN+ruCUnKWu04W7KgpkpXo/n6l2B5JOBQaGctC6A4/jXjwGZRjlOLe7U40h0An4GC9dryMQemEhgRoNldPAoIprMKuBUWyWPEPP47KTmtGR8FLQjMQ6W9wM3iwNlR7qNB1Is0E95rNgCc0IpcJkR8QxHuCQBWyR44YH7kvFUjb+MaNrjQ5w3otn0dxOYnc3Q04XzXLJfSiVX8uFyvPqA7LkktySO+KSJ1IhL6ROGoSSmHyQT/KV+bEurCvr5u+olVnNnJE1Wfe/OPnC8w==</latexit>
<latexit sha1_base64="X2wfymGPxtMiRl87YK2wU1I4c/c=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRgiZuiWzckGAil4QSMh0OZWDaaWamhqbhWdzqI/kWPoIFiUnpvzr5zpw5//zjBJwpbVnfOWNv/+DwKH9snpyenV8Uipc9JUJJsUsFF3LgEIWc+djVTHMcBBKJ53DsO4vWut9/R6mY8N90FODII67PpowSnaBxoRTbjuATj+iZWbE1CSvmalwoWzVro7tsUd8WZdiqMy7mWvZE0NBDX1NOlBqSx/konhOpGeW4Mu1QYUDogrgYbzynEfHU2kACFWoqQl+jjNtk2SZasmXyCLWKG1ZmRkWek4F65qXZ+mbiLLNQqqnK0onQO9RhLvM3UM9QSEx2RBzjCU6Zz9Yp7njgrpAsY+MfM5pqDAnno3gZrcwk9vpuyNmi16jVH2qN10a5+bz9gDxcwz1UoQ5P0IQX6EAXKETwAZ/wlfsxrowb4/bvqJHbzpQgJaP6C3ShwiY=</latexit>
b
<latexit sha1_base64="m8vJugzfgwdcKSHBvb9br7wm/U8=">AAACa3icZZHLTgIxFIYP4w3H2yA7dWEEE1dkQBO3RDZuSDCRSwKEtOUwFDrTSVsIZMKbuNV38iF8BwecmMD8qz/f6ek5/UtDwbVx3e+Mtbd/cHiUPbZPTs/OL5zcZUvLmWLYZFJI1aFEo+ABNg03AjuhQuJTgW06ra3r7TkqzWXwbpYh9n3iBXzEGTExGjhO1KNSDH1ixnaRFu3VwCm4JXej27QpJ6YAiRqDXKbWG0o28zEwTBCtu+Rp0o8mRBnOBK7s3kxjSNiUeBhtFt5GxNfr6THUaJicBQZVVCeLOjGKL+IX6FVUcVM9eunTFDRjf5utbyZ0kYZKj3SaDqXZoZR7PNhAM0apMJ6xFBgNccQDvo5wZwfhScVTa/xjzrYKXSJEP1osV3Yce3k35LRpVUrlx1LlrVKoviQfkIVruIMHKMMzVOEVGtAEBnP4gE/4yvxYeevKuvk7amWSnjxsybr/BXVEwMQ=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="Y/3JhWVR6voQq+MIoGsFG5yuPOg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgklZDo9lIFpp5kZTJuGZ3Grj+Rb+Ai2SExK/9XJd+bM+ecfJ2RUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJF8JAn3CGRcjB0tgNIC+oorBKBSAfYfB0Fl2sv7wHYSkPHhTcQgTH3sBnVGCVYqm5WpiO5y5PlZzo26DwnVjPS3XzKa50V2xsLZFDW3Vm1a0ju1ysvIhUIRhKcf4cTFJFlgoShisDXslIcRkiT1INp7zCPsyM5BCCYrwVaBAJF0cdbESNEofIddJyyzMyNh3ClDN/TzLbsZOVIRCzmSRulztUId6NNhANQcuIN0RM0hcmNGAZinueGAeF7Rg4x9TkmuMMWOTJIrXRhq7tRtysRi0mtZDs/XaqrWftx9QQtfoHjWQhZ5QG72gHuojgmL0gT7Rl/ajX+k3+u3fUV3bzlRRTnrjF1UGwhY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="a6bZETIPCq8P1o7BwRmtu77xJLg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgkQMp0eysC008xMDU3Ds7jVR/ItfARbbExK/9XJd+bM+ecfO2BUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJA8FgT7hjIuRjSUw6kNfUcVgFAjAns1gaK86aX/4DkJS7r+pKICph12fzinBKkGzcjWe2Jw5HlYLoz7pLWjd2MzKNbNpbnVXLKysqKFMvVlF60wcTkIPfEUYlnKMH5fTeImFooTBxpiEEgJMVtiFeOs5j7AnUwMJlKAID30FIu7idRcrQdfJI+QmbpmFGRl5dgGqhZdn6c3YXhehkHNZpA5XO9SmLvW3UC2AC0h2RAxiB+bUp2mKOx6YywUt2PjHlOQaY8zYNF5HGyOJ3doNuVgMWk3rodl6bdXaz9kHlNA1ukcNZKEn1EYvqIf6iKAIfaBP9KX96Ff6jX77d1TXspkqyklv/AIjf8H9</latexit>
<latexit sha1_base64="TjjbuIhnCOYM4ZALZBWT3IyDLo4=">AAACcXicZZHLasJAFIZP0ptNb9pCoXQj6qJQkJgWupW66aKChXoBFZlMjjo6yYSZsShpXqbb9oX6HH2BRisFzb86fGf+Of+ccUPOlLbtb8Pc2d3bP8gcWkfHJ6dn2dx5S4mZpNikggvZcYlCzgJsaqY5dkKJxHc5tt1pbdlvv6FUTASvehFi3yejgA0ZJTpBg+xl1HMF93yix1ap95wYPVKy4kG2aJftlfLporIuirBWY5Azaj1P0JmPgaacKNUl95N+NCFSM8oxtnozhSGhUzLCaBV7ExFfLTMkUKGmYhZolFGdzOtESzZP3qHiyLFTHrXw3RTUY3+TLW8m7jwNpRqqNPWE3qIuG7FgBfUYhcRkxoJj5OGQBWy5yK0MfCQkS8X4x4xuNLqE8340X8RWsvbK9pLTRcspV+7KzotTrD6uPyAD11CAG6jAA1ThCRrQBArv8AGf8GX8mFdm3iz8HTWNtecCNmTe/gLe+cM7</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
(a) LDA (Blei et al., 2003).
Labeled LDA
LDA Seeded LDA
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
r
<latexit sha1_base64="3Eat2YKfp79/Ch+LOSN/8jqLOlA=">AAACcXicZZHLTsJAFIaHesN6A01MjBsCLExMSKkmbols3JBgIpeEIpmZHmBg2mlmBlNS+zJu9YV8Dl/AFokJ9F+dfGfOnH/+IQFnSlvWd87Y2d3bP8gfmkfHJ6dnheJ5V4mFpNChggvZJ1gBZz50NNMc+oEE7BEOPTJvpv3eG0jFhP+ilwEMPTzx2ZhRrBM0KlxGDhHc9bCemlWHgMavsmrGo0LFqlkrlbJFfV1U0FrtUTHXdFxBFx74mnKs1ADfz4bRDEvNKIfYdBYKAkzneALRyvYmwp5KPSRQgaZi4WuQUQuHLawlC5N3qDiyrcyMWnokA/XU22TpzZiEWSjVWGWpK/QWJWzC/BXUUxASkh1LDpELY+azNMgtD3wiJMvY+MeMbjQGmPNhFC5jM4m9vh1ytujatfpdzX62K43H9Qfk0TUqoxtURw+ogZ5QG3UQRe/oA32ir9yPcWWUjPLfUSO3nrlAGzJufwE0ZsNm</latexit>
r
<latexit sha1_base64="D0ly8UQniO3m1qzXobGx4g21hTw=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Tdzoi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFUucMB</latexit>
s
<latexit sha1_base64="a8ZzrSU5ilyQ6UKTcb7bWcUyE1A=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Td7oi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFWssMC</latexit>
<latexit sha1_base64="eF3yQIi9D43M9eQ2JDuK+Xpl2BQ=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHR6KAPTTjMzmDYNz+JWH8m38BEsSExK/9XJd+bM+ecfN2JUKtP81vS9/YPDo9KxcXJ6dn5Rrlz2JV8KAj3CGRdDF0tgNISeoorBMBKAA5fBwF201/3BOwhJefimkgjGAfZDOqUEqwxNytXUcTnzAqxmRt2JJK0bq0m5ZjbNje6KhbUtamir7qSitR2Pk2UAoSIMSznCj/NxOsdCUcJgZThLCREmC+xDuvGcRziQawMZlKAIX4YKRNrBcQcrQePsEXKV2mZhRiaBW4BqFuTZ+mbsxkUo5FQWqcfVDnWpT8MNVDPgArIdCYPUgykN6TrFHQ/M54IWbPxjSnKNEWZsnMbJyshit3ZDLhZ9u2k9NO1Xu9Z63n5ACV2je9RAFnpCLfSCuqiHCErQB/pEX9qPfqXf6Ld/R3VtO1NFOemNX3idwig=</latexit>
x
<latexit sha1_base64="9OstR+bEV+nDS0Du4O4kvdn618g=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWyMYNCSZySYCQ6fQAA9NOMzMlJU3fxK2+kw/hO9giMSn9V3++M2fOmX+cgFGpTPO7pO3tHxwelY/1k9Oz8wujctmTPBQEuoQzLgYOlsCoD11FFYNBIAB7DoO+s2xl9f4KhKTcf1frAMYenvl0SglWKZoYRjxyOHM9rOZ6ParrycSomQ1zo9uisbamhrbqTCql1sjlJPTAV4RhKYf4aTGOF1goShgk+iiUEGCyxDOINwvnEfZkNj2FEhThoa9AxG0ctbESNEpfIJPYNgs9cu05BajmXp5lN2MnKkIhp7JIXa52qENn1N9ANQcuIJ2xZhC7MKU+zSLc2YHNuKCFNf4xJbnCEDM2jqN1oqexW7shF03PbliPDfvNrjVfth9QRtfoDj0gCz2jJnpFHdRFBK3QB/pEX6UfrapdaTd/R7XStqeKctLufwGgqsDa</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
g
<latexit sha1_base64="1nFScu3gfGuSAdSKUFT2bIRMpmM=">AAACa3icZZHLTsJAFIYP9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAoA9NOMzOQkoY3cavv5EP4DhYkJqX/6s935sw5848bcqa0ZX3njL39g8Oj/LF5cnp2flEoXraVmEuKLSq4kF2XKOQswJZmmmM3lEh8l2PHndXX9c4CpWIieNfLEAc+8QI2ZpToBA0LhbjvCj7yiZ6YFa9iroaFslW1NrrNGntryrBVc1jM1fsjQec+BppyolSPPE0H8ZRIzSjHldmfKwwJnREP483CaUR8tZ6eQIWainmgUcYNEjWIlixKXqBWsWNletTSdzNQT/w0W99M3CgLpRqrLB0JvUNd5rFgA/UEhcRkxpJjPMIxC9g6wp0duCcky6zxjxlNFXqE80EcLVdmEru9G3LWtJ2q/Vh13pxy7WX7AXm4hjt4ABueoQav0IQWUFjAB3zCV+7HKBlXxs3fUSO37SlBSsb9L38hwMk=</latexit>
<latexit sha1_base64="v/mk54zej7fa4CgkUKVzIiJazoo=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckBk0cUtk44YEE7kkQMiZchgK7XTSFsNkwsO41SfyNXwCByQmMP/q5Ds9PX//eiFn2jjOd8ba2t7Z3cvu2weHR8cnufxpU8upotigkkvV9kAjZwE2DDMc26FCEB7HljepLvqtd1SayeDNRCH2BPgBGzIKJkH93Hnc9SQfCDAju9j1QQgo2vN+ruCUnKWu04W7KgpkpXo/n6l2B5JOBQaGctC6A4/jXjwGZRjlOLe7U40h0An4GC9dryMQemEhgRoNldPAoIprMKuBUWyWPEPP47KTmtGR8FLQjMQ6W9wM3iwNlR7qNB1Is0E95rNgCc0IpcJkR8QxHuCQBWyR44YH7kvFUjb+MaNrjQ5w3otn0dxOYnc3Q04XzXLJfSiVX8uFyvPqA7LkktySO+KSJ1IhL6ROGoSSmHyQT/KV+bEurCvr5u+olVnNnJE1Wfe/OPnC8w==</latexit>
<latexit sha1_base64="X2wfymGPxtMiRl87YK2wU1I4c/c=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRgiZuiWzckGAil4QSMh0OZWDaaWamhqbhWdzqI/kWPoIFiUnpvzr5zpw5//zjBJwpbVnfOWNv/+DwKH9snpyenV8Uipc9JUJJsUsFF3LgEIWc+djVTHMcBBKJ53DsO4vWut9/R6mY8N90FODII67PpowSnaBxoRTbjuATj+iZWbE1CSvmalwoWzVro7tsUd8WZdiqMy7mWvZE0NBDX1NOlBqSx/konhOpGeW4Mu1QYUDogrgYbzynEfHU2kACFWoqQl+jjNtk2SZasmXyCLWKG1ZmRkWek4F65qXZ+mbiLLNQqqnK0onQO9RhLvM3UM9QSEx2RBzjCU6Zz9Yp7njgrpAsY+MfM5pqDAnno3gZrcwk9vpuyNmi16jVH2qN10a5+bz9gDxcwz1UoQ5P0IQX6EAXKETwAZ/wlfsxrowb4/bvqJHbzpQgJaP6C3ShwiY=</latexit>
b
<latexit sha1_base64="m8vJugzfgwdcKSHBvb9br7wm/U8=">AAACa3icZZHLTgIxFIYP4w3H2yA7dWEEE1dkQBO3RDZuSDCRSwKEtOUwFDrTSVsIZMKbuNV38iF8BwecmMD8qz/f6ek5/UtDwbVx3e+Mtbd/cHiUPbZPTs/OL5zcZUvLmWLYZFJI1aFEo+ABNg03AjuhQuJTgW06ra3r7TkqzWXwbpYh9n3iBXzEGTExGjhO1KNSDH1ixnaRFu3VwCm4JXej27QpJ6YAiRqDXKbWG0o28zEwTBCtu+Rp0o8mRBnOBK7s3kxjSNiUeBhtFt5GxNfr6THUaJicBQZVVCeLOjGKL+IX6FVUcVM9eunTFDRjf5utbyZ0kYZKj3SaDqXZoZR7PNhAM0apMJ6xFBgNccQDvo5wZwfhScVTa/xjzrYKXSJEP1osV3Yce3k35LRpVUrlx1LlrVKoviQfkIVruIMHKMMzVOEVGtAEBnP4gE/4yvxYeevKuvk7amWSnjxsybr/BXVEwMQ=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="Y/3JhWVR6voQq+MIoGsFG5yuPOg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgklZDo9lIFpp5kZTJuGZ3Grj+Rb+Ai2SExK/9XJd+bM+ecfJ2RUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJF8JAn3CGRcjB0tgNIC+oorBKBSAfYfB0Fl2sv7wHYSkPHhTcQgTH3sBnVGCVYqm5WpiO5y5PlZzo26DwnVjPS3XzKa50V2xsLZFDW3Vm1a0ju1ysvIhUIRhKcf4cTFJFlgoShisDXslIcRkiT1INp7zCPsyM5BCCYrwVaBAJF0cdbESNEofIddJyyzMyNh3ClDN/TzLbsZOVIRCzmSRulztUId6NNhANQcuIN0RM0hcmNGAZinueGAeF7Rg4x9TkmuMMWOTJIrXRhq7tRtysRi0mtZDs/XaqrWftx9QQtfoHjWQhZ5QG72gHuojgmL0gT7Rl/ajX+k3+u3fUV3bzlRRTnrjF1UGwhY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="a6bZETIPCq8P1o7BwRmtu77xJLg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgkQMp0eysC008xMDU3Ds7jVR/ItfARbbExK/9XJd+bM+ecfO2BUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJA8FgT7hjIuRjSUw6kNfUcVgFAjAns1gaK86aX/4DkJS7r+pKICph12fzinBKkGzcjWe2Jw5HlYLoz7pLWjd2MzKNbNpbnVXLKysqKFMvVlF60wcTkIPfEUYlnKMH5fTeImFooTBxpiEEgJMVtiFeOs5j7AnUwMJlKAID30FIu7idRcrQdfJI+QmbpmFGRl5dgGqhZdn6c3YXhehkHNZpA5XO9SmLvW3UC2AC0h2RAxiB+bUp2mKOx6YywUt2PjHlOQaY8zYNF5HGyOJ3doNuVgMWk3rodl6bdXaz9kHlNA1ukcNZKEn1EYvqIf6iKAIfaBP9KX96Ff6jX77d1TXspkqyklv/AIjf8H9</latexit>
<latexit sha1_base64="TjjbuIhnCOYM4ZALZBWT3IyDLo4=">AAACcXicZZHLasJAFIZP0ptNb9pCoXQj6qJQkJgWupW66aKChXoBFZlMjjo6yYSZsShpXqbb9oX6HH2BRisFzb86fGf+Of+ccUPOlLbtb8Pc2d3bP8gcWkfHJ6dn2dx5S4mZpNikggvZcYlCzgJsaqY5dkKJxHc5tt1pbdlvv6FUTASvehFi3yejgA0ZJTpBg+xl1HMF93yix1ap95wYPVKy4kG2aJftlfLporIuirBWY5Azaj1P0JmPgaacKNUl95N+NCFSM8oxtnozhSGhUzLCaBV7ExFfLTMkUKGmYhZolFGdzOtESzZP3qHiyLFTHrXw3RTUY3+TLW8m7jwNpRqqNPWE3qIuG7FgBfUYhcRkxoJj5OGQBWy5yK0MfCQkS8X4x4xuNLqE8340X8RWsvbK9pLTRcspV+7KzotTrD6uPyAD11CAG6jAA1ThCRrQBArv8AGf8GX8mFdm3iz8HTWNtecCNmTe/gLe+cM7</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
(b) LLDA (Ramage et al., 2009).
Labeled LDA
LDA Seeded LDA
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
r
<latexit sha1_base64="3Eat2YKfp79/Ch+LOSN/8jqLOlA=">AAACcXicZZHLTsJAFIaHesN6A01MjBsCLExMSKkmbols3JBgIpeEIpmZHmBg2mlmBlNS+zJu9YV8Dl/AFokJ9F+dfGfOnH/+IQFnSlvWd87Y2d3bP8gfmkfHJ6dnheJ5V4mFpNChggvZJ1gBZz50NNMc+oEE7BEOPTJvpv3eG0jFhP+ilwEMPTzx2ZhRrBM0KlxGDhHc9bCemlWHgMavsmrGo0LFqlkrlbJFfV1U0FrtUTHXdFxBFx74mnKs1ADfz4bRDEvNKIfYdBYKAkzneALRyvYmwp5KPSRQgaZi4WuQUQuHLawlC5N3qDiyrcyMWnokA/XU22TpzZiEWSjVWGWpK/QWJWzC/BXUUxASkh1LDpELY+azNMgtD3wiJMvY+MeMbjQGmPNhFC5jM4m9vh1ytujatfpdzX62K43H9Qfk0TUqoxtURw+ogZ5QG3UQRe/oA32ir9yPcWWUjPLfUSO3nrlAGzJufwE0ZsNm</latexit>
r
<latexit sha1_base64="D0ly8UQniO3m1qzXobGx4g21hTw=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Tdzoi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFUucMB</latexit>
s
<latexit sha1_base64="a8ZzrSU5ilyQ6UKTcb7bWcUyE1A=">AAACcHicZZHLSsNAFIan8VbjrVUEwYWXuhAXJYmC22I3bgoV7AWaWiaT03TaSSbMTCUh9GHc6hP5Gj6BaQ1Cmn91+M6cOf/844SMSmUY3yVtY3Nre6e8q+/tHxweVarHXcnngkCHcMZF38ESGA2go6hi0A8FYN9h0HNmzWW/9w5CUh68qjiEoY+9gI4pwSpFo8ppYjucuT5WE/3GDif0Td7oi1GlZtSNlS6LhZkVNZSpPaqWmrbLydyHQBGGpRzgh+kwmWKhKGGw0O25hBCTGfYgWbnOI+zLpYUUSlCEzwMFImnhqIWVoFH6DLlILKMwI2PfKUA18fNseTN2oiIUciyL1OVqjTrUo8EKqglwAemOmEHiwpgGdJnjmgfmcUELNv4xJbnGADM2TKJ4oaexm+shF4uuVTfv69aLVWs8ZR9QRufoGt0iEz2iBnpGbdRBBCXoA32ir9KPdqZdaFd/R7VSNnOCctLufgFWssMC</latexit>
<latexit sha1_base64="eF3yQIi9D43M9eQ2JDuK+Xpl2BQ=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHR6KAPTTjMzmDYNz+JWH8m38BEsSExK/9XJd+bM+ecfN2JUKtP81vS9/YPDo9KxcXJ6dn5Rrlz2JV8KAj3CGRdDF0tgNISeoorBMBKAA5fBwF201/3BOwhJefimkgjGAfZDOqUEqwxNytXUcTnzAqxmRt2JJK0bq0m5ZjbNje6KhbUtamir7qSitR2Pk2UAoSIMSznCj/NxOsdCUcJgZThLCREmC+xDuvGcRziQawMZlKAIX4YKRNrBcQcrQePsEXKV2mZhRiaBW4BqFuTZ+mbsxkUo5FQWqcfVDnWpT8MNVDPgArIdCYPUgykN6TrFHQ/M54IWbPxjSnKNEWZsnMbJyshit3ZDLhZ9u2k9NO1Xu9Z63n5ACV2je9RAFnpCLfSCuqiHCErQB/pEX9qPfqXf6Ld/R3VtO1NFOemNX3idwig=</latexit>
x
<latexit sha1_base64="9OstR+bEV+nDS0Du4O4kvdn618g=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWyMYNCSZySYCQ6fQAA9NOMzMlJU3fxK2+kw/hO9giMSn9V3++M2fOmX+cgFGpTPO7pO3tHxwelY/1k9Oz8wujctmTPBQEuoQzLgYOlsCoD11FFYNBIAB7DoO+s2xl9f4KhKTcf1frAMYenvl0SglWKZoYRjxyOHM9rOZ6ParrycSomQ1zo9uisbamhrbqTCql1sjlJPTAV4RhKYf4aTGOF1goShgk+iiUEGCyxDOINwvnEfZkNj2FEhThoa9AxG0ctbESNEpfIJPYNgs9cu05BajmXp5lN2MnKkIhp7JIXa52qENn1N9ANQcuIJ2xZhC7MKU+zSLc2YHNuKCFNf4xJbnCEDM2jqN1oqexW7shF03PbliPDfvNrjVfth9QRtfoDj0gCz2jJnpFHdRFBK3QB/pEX6UfrapdaTd/R7XStqeKctLufwGgqsDa</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
g
<latexit sha1_base64="1nFScu3gfGuSAdSKUFT2bIRMpmM=">AAACa3icZZHLTsJAFIYP9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAoA9NOMzOQkoY3cavv5EP4DhYkJqX/6s935sw5848bcqa0ZX3njL39g8Oj/LF5cnp2flEoXraVmEuKLSq4kF2XKOQswJZmmmM3lEh8l2PHndXX9c4CpWIieNfLEAc+8QI2ZpToBA0LhbjvCj7yiZ6YFa9iroaFslW1NrrNGntryrBVc1jM1fsjQec+BppyolSPPE0H8ZRIzSjHldmfKwwJnREP483CaUR8tZ6eQIWainmgUcYNEjWIlixKXqBWsWNletTSdzNQT/w0W99M3CgLpRqrLB0JvUNd5rFgA/UEhcRkxpJjPMIxC9g6wp0duCcky6zxjxlNFXqE80EcLVdmEru9G3LWtJ2q/Vh13pxy7WX7AXm4hjt4ABueoQav0IQWUFjAB3zCV+7HKBlXxs3fUSO37SlBSsb9L38hwMk=</latexit>
<latexit sha1_base64="v/mk54zej7fa4CgkUKVzIiJazoo=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckBk0cUtk44YEE7kkQMiZchgK7XTSFsNkwsO41SfyNXwCByQmMP/q5Ds9PX//eiFn2jjOd8ba2t7Z3cvu2weHR8cnufxpU8upotigkkvV9kAjZwE2DDMc26FCEB7HljepLvqtd1SayeDNRCH2BPgBGzIKJkH93Hnc9SQfCDAju9j1QQgo2vN+ruCUnKWu04W7KgpkpXo/n6l2B5JOBQaGctC6A4/jXjwGZRjlOLe7U40h0An4GC9dryMQemEhgRoNldPAoIprMKuBUWyWPEPP47KTmtGR8FLQjMQ6W9wM3iwNlR7qNB1Is0E95rNgCc0IpcJkR8QxHuCQBWyR44YH7kvFUjb+MaNrjQ5w3otn0dxOYnc3Q04XzXLJfSiVX8uFyvPqA7LkktySO+KSJ1IhL6ROGoSSmHyQT/KV+bEurCvr5u+olVnNnJE1Wfe/OPnC8w==</latexit>
<latexit sha1_base64="X2wfymGPxtMiRl87YK2wU1I4c/c=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRgiZuiWzckGAil4QSMh0OZWDaaWamhqbhWdzqI/kWPoIFiUnpvzr5zpw5//zjBJwpbVnfOWNv/+DwKH9snpyenV8Uipc9JUJJsUsFF3LgEIWc+djVTHMcBBKJ53DsO4vWut9/R6mY8N90FODII67PpowSnaBxoRTbjuATj+iZWbE1CSvmalwoWzVro7tsUd8WZdiqMy7mWvZE0NBDX1NOlBqSx/konhOpGeW4Mu1QYUDogrgYbzynEfHU2kACFWoqQl+jjNtk2SZasmXyCLWKG1ZmRkWek4F65qXZ+mbiLLNQqqnK0onQO9RhLvM3UM9QSEx2RBzjCU6Zz9Yp7njgrpAsY+MfM5pqDAnno3gZrcwk9vpuyNmi16jVH2qN10a5+bz9gDxcwz1UoQ5P0IQX6EAXKETwAZ/wlfsxrowb4/bvqJHbzpQgJaP6C3ShwiY=</latexit>
b
<latexit sha1_base64="m8vJugzfgwdcKSHBvb9br7wm/U8=">AAACa3icZZHLTgIxFIYP4w3H2yA7dWEEE1dkQBO3RDZuSDCRSwKEtOUwFDrTSVsIZMKbuNV38iF8BwecmMD8qz/f6ek5/UtDwbVx3e+Mtbd/cHiUPbZPTs/OL5zcZUvLmWLYZFJI1aFEo+ABNg03AjuhQuJTgW06ra3r7TkqzWXwbpYh9n3iBXzEGTExGjhO1KNSDH1ixnaRFu3VwCm4JXej27QpJ6YAiRqDXKbWG0o28zEwTBCtu+Rp0o8mRBnOBK7s3kxjSNiUeBhtFt5GxNfr6THUaJicBQZVVCeLOjGKL+IX6FVUcVM9eunTFDRjf5utbyZ0kYZKj3SaDqXZoZR7PNhAM0apMJ6xFBgNccQDvo5wZwfhScVTa/xjzrYKXSJEP1osV3Yce3k35LRpVUrlx1LlrVKoviQfkIVruIMHKMMzVOEVGtAEBnP4gE/4yvxYeevKuvk7amWSnjxsybr/BXVEwMQ=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="Y/3JhWVR6voQq+MIoGsFG5yuPOg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgklZDo9lIFpp5kZTJuGZ3Grj+Rb+Ai2SExK/9XJd+bM+ecfJ2RUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJF8JAn3CGRcjB0tgNIC+oorBKBSAfYfB0Fl2sv7wHYSkPHhTcQgTH3sBnVGCVYqm5WpiO5y5PlZzo26DwnVjPS3XzKa50V2xsLZFDW3Vm1a0ju1ysvIhUIRhKcf4cTFJFlgoShisDXslIcRkiT1INp7zCPsyM5BCCYrwVaBAJF0cdbESNEofIddJyyzMyNh3ClDN/TzLbsZOVIRCzmSRulztUId6NNhANQcuIN0RM0hcmNGAZinueGAeF7Rg4x9TkmuMMWOTJIrXRhq7tRtysRi0mtZDs/XaqrWftx9QQtfoHjWQhZ5QG72gHuojgmL0gT7Rl/ajX+k3+u3fUV3bzlRRTnrjF1UGwhY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
K
<latexit sha1_base64="FnwjOJKlE9EnO6pemzKI5tt+4d0=">AAACa3icZZHLSsNAFIan8VbjLbU7dSG2gquSRMFtsRtBChXsBdpSJtPTdOwkE2amJSXkTdzqO/kQvoNJDUKaf/XznTlzzvzjBIxKZZrfJW1nd2//oHyoHx2fnJ4ZlfOe5EtBoEs442LgYAmM+tBVVDEYBAKw5zDoO4tWWu+vQEjK/Te1DmDsYdenM0qwStDEMKKRw9nUw2qu11/qejwxambD3Oi6aKzM1FCmzqRSao2mnCw98BVhWMohfngfR+9YKEoYxPpoKSHAZIFdiDYL5xH2ZDo9gRIU4UtfgYjaOGxjJWiYvEDGkW0WeuTacwpQzb08S2/GTliEQs5kkU652qIOdam/gWoOXEAyY80gmsKM+jSNcGsH5nJBC2v8Y0pyhSFmbByF61hPYre2Qy6ant2w7hv2q11rPmUfUEaX6AbdIQs9oiZ6Rh3URQSt0Af6RF+lH62qXWhXf0e1UtZTRTlpt79H5cCt</latexit>
D
<latexit sha1_base64="FY6oCTTNvJhW6CWVxyGVztXQjSk=">AAACa3icZZHLTsJAFIaHesN6K7JTF0YwcUXaauKWiAs3JJjIJQFCpsOhjEw7zcxASpq+iVt9Jx/Cd7DFxqT0X/35zpw5Z/5xAkalMs3vkrazu7d/UD7Uj45PTs+MynlP8qUg0CWccTFwsARGfegqqhgMAgHYcxj0nUUrrfdXICTl/ptaBzD2sOvTGSVYJWhiGNHI4WzqYTXX6891PZ4YNbNhbnRdNFZmaihTZ1IptUZTTpYe+IowLOUQP7yPo3csFCUMYn20lBBgssAuRJuF8wh7Mp2eQAmK8KWvQERtHLaxEjRMXiDjyDYLPXLtOQWo5l6epTdjJyxCIWeySKdcbVGHutTfQDUHLiCZsWYQTWFGfZpGuLUDc7mghTX+MSW5whAzNo7CdawnsVvbIRdNz25Y9w371a41n7IPKKNLdIPukIUeURO9oA7qIoJW6AN9oq/Sj1bVLrSrv6NaKeupopy02186FsCm</latexit>
N
d
<latexit sha1_base64="tid3WGgQ7DPGvtX84A3ToDdDNUA=">AAACbXicZZHLTsJAFIYP9Yb1BhhXGmOERFekoIlbIhs3GE3kkgAh0+mhDEw7ZGZqSpq+ilt9JZ/CV7BFYgL9V3++M2fOmX/sOWdKW9Z3ztja3tndy++bB4dHxyeFYqmjRCAptqngQvZsopAzH9uaaY69uUTi2Ry79qyZ1rvvKBUT/ptezHHoEddnY0aJTtCoUIoGtuCOR/TErDyPnIoZjwplq2otdZU1tZUpw0ovo2KuOXAEDTz0NeVEqT65nw6jKZGaUY6xOQgUzgmdERej5crriHgqnZ9AhZqKwNcooxYJW0RLFiZvUHFUtzI9auHZGagn3jpLbyZ2mIVSjVWWOkJvUJu5zF9CPUEhMZmx4Bg5OGY+S0Pc2IG7QrLMGv+Y0bVCn3A+jMJFbCax1zZDzppOvVq7q9Zf6+XG4+oD8nAO13ALNXiABjzBC7SBQggf8AlfuR/jzLgwLv+OGrlVzymsybj5BSNcwYc=</latexit>
<latexit sha1_base64="Pzv/mrzyY2wHkx8A1Byx7ZCJm/o=">AAACcHicZZHLTsJAFIaHesN6A42JiQsvsDAuSFtN3BLZuCHBRC4JEHI6HGBg2mlmpgbS9GHc6hP5Gj6BBRsT6L86+c6cOf/84wacKW1Z3zlja3tndy+/bx4cHh2fFIqnLSVCSbFJBRey44JCznxsaqY5dgKJ4Lkc2+6stuy331EqJvw3vQiw78HYZyNGQSdoUDiPeq7gQw/0xCz3gAcTKJvxoFCyKtZK19nCTosSSdUYFHO13lDQ0ENfUw5KdeFx2o+mIDWjHGOzFyoMgM5gjNHK9ToCTy0tJFChpiL0NcqoDvM6aMnmyTNUHDlWZkYtPDcD9cRbZ8ubwZ1noVQjlaVDoTeoy8bMX0E9QSEx2bHgGA1xxHy2zHHDAx8LyTI2/jGja40ucN6P5ovYTGK3N0POFi2nYj9UnFenVH1OPyBPLsktuSM2eSJV8kIapEkoicgH+SRfuR/jwrgybv6OGrl05oysybj/BT7uwvY=</latexit>
z
<latexit sha1_base64="wVRBTc5BpSIugg7PEEaKsc4QVFc=">AAACa3icZZHLTsJAFIZP6w3rDWSnLoxg4ooUNHFLZOOGBBO5JEDIdHoog9MOmZkSasObuNV38iF8B1skJtB/9ec7c+ac+ceZcaa0bX8b5s7u3v5B7tA6Oj45PcsXzjtKhJJimwouZM8hCjkLsK2Z5tibSSS+w7HrvDXSeneOUjERvOpohkOfeAEbM0p0gkb5fDxwBHd9oidW+b1sLUf5kl2xV7rOmuralGCt1qhgNAauoKGPgaacKNUnD9NhPCVSM8pxaQ1ChTNC34iH8WrhTUR8lU5PoEJNRRholHGTLJpES7ZIXqCWcc3O9KjIdzJQT/xNlt5MnEUWSjVWWeoKvUUd5rFgBfUEhcRkRsQxdnHMApZGuLUD94RkmTX+MaMbhT7hfBgvoqWVxF7dDjlrOrVK9b5Se6mV6k/rD8jBJdzAHVThEerwDC1oA4U5fMAnfBk/ZtG8MK/+jprGuqcIGzJvfwGknMDc</latexit>
w
<latexit sha1_base64="hM2iKVi2CpspvbIwLHiK8oUrixo=">AAACa3icZZHLTsJAFIan9Yb1BrJTF0YwcUXaauKWyMYNCSZySYCQ6XAog9NOMzPFNg1v4lbfyYfwHWyxMYH+qz/fmTPnzD9OwKhUpvmt6Tu7e/sHpUPj6Pjk9KxcOe9JHgoCXcIZFwMHS2DUh66iisEgEIA9h0HfeWtl9f4ShKTcf1VxAGMPuz6dUYJViiblcjJyOJt6WM2N+nvdWE3KNbNhrnVdNFZuaihXZ1LRWqMpJ6EHviIMSznED4txssBCUcJgZYxCCQEmb9iFZL3wJsKezKanUIIiPPQViKSNozZWgkbpC+Qqsc1Cj4w9pwDV3Ntk2c3YiYpQyJks0ilXW9ShLvXXUM2BC0hnxAySKcyoT7MIt3ZgLhe0sMY/pmSjMMSMjZMoXhlp7NZ2yEXTsxvWfcN+sWvNp/wDSugS3aA7ZKFH1ETPqIO6iKAl+kCf6Ev70av6hX71d1TX8p4q2pB++wuescDZ</latexit>
<latexit sha1_base64="II4UsidxWlZDzwIDEKIvj8XGVLs=">AAACcHicZZHLTgIxFIbLeMPxBhoTExdeYGFckJnRxC2RjRsSTOSSMIS05QCFznTSFjOk4WHc6hP5Gj6BAxKTYf7VyXd6ev7+JRFnSjvOd87a2t7Z3cvv2weHR8cnheJpS4mZpNCkggvZIVgBZyE0NdMcOpEEHBAObTKtLfvtd5CKifBNzyPoBXgUsiGjWCeoXzg3PhF8EGA9tsu+HoPGZXvRL5ScirPSdbZw10UJrdXoF3M1fyDoLIBQU46V6uLHSc9MsNSMcljY/kxBhOkUj8CsXKcRDtTSQgIVaCpmoQZp6jiuYy1ZnDxDLYznZGbUPCAZqMdBmi1vxiTOQqmGKksHQm9QwkYsXMEkICEh2THnYAYwZCFb5rjhgY+EZBkb/5jRVKOLOe+ZeL6wk9jdzZCzRcuruA8V79UrVZ/XH5BHl+gW3SEXPaEqekEN1EQUGfSBPtFX7se6sK6sm7+jVm49c4ZSsu5/AV60wwY=</latexit>
<latexit sha1_base64="IwThYXztQzt8BUjDjwwM4dQM4GM=">AAACb3icZZHLTsJAFIaHesN6AzVxYWKIsNANaauJWyIbNySYyCUBQmamBxiZdpqZwYBN38WtvpGP4RvYYmNS+q9OvjNnzj//kIAzpS3ru2Bsbe/s7hX3zYPDo+OTUvm0q8RCUuhQwYXsE6yAMx86mmkO/UAC9giHHpk3k37vDaRiwn/RqwBGHp76bMIo1jEal87DIRHc9bCembUhAY1rZjQuVa26tVYlX9hpUUWp2uNyoTl0BV144GvKsVIDfP86Cl+x1IxyiMzhQkGA6RxPIVybziLsqcRBDBVoKha+Bhm28LKFtWTL+BUqCh0rN6NWHslBPfOyLLkZk2UeSjVReeoKvUEJmzJ/DfUMhIR4x4pD6MKE+SyJccMDnwrJcjb+MaOZxgBzPgqXq8iMY7c3Q84XXadu39WdZ6faeEw/oIgu0TW6QTZ6QA30hNqogyh6Rx/oE30VfowL48qo/B01CunMGcrIuP0FQdLCgg==</latexit>
<latexit sha1_base64="a6bZETIPCq8P1o7BwRmtu77xJLg=">AAACbnicZZHLTsJAFIan9Yb1BpK4MUYjLFiRFk3cEtm4IcFELgkQMp0eysC008xMDU3Ds7jVR/ItfARbbExK/9XJd+bM+ecfO2BUKtP81vS9/YPDo9KxcXJ6dn5RrlwOJA8FgT7hjIuRjSUw6kNfUcVgFAjAns1gaK86aX/4DkJS7r+pKICph12fzinBKkGzcjWe2Jw5HlYLoz7pLWjd2MzKNbNpbnVXLKysqKFMvVlF60wcTkIPfEUYlnKMH5fTeImFooTBxpiEEgJMVtiFeOs5j7AnUwMJlKAID30FIu7idRcrQdfJI+QmbpmFGRl5dgGqhZdn6c3YXhehkHNZpA5XO9SmLvW3UC2AC0h2RAxiB+bUp2mKOx6YywUt2PjHlOQaY8zYNF5HGyOJ3doNuVgMWk3rodl6bdXaz9kHlNA1ukcNZKEn1EYvqIf6iKAIfaBP9KX96Ff6jX77d1TXspkqyklv/AIjf8H9</latexit>
<latexit sha1_base64="TjjbuIhnCOYM4ZALZBWT3IyDLo4=">AAACcXicZZHLasJAFIZP0ptNb9pCoXQj6qJQkJgWupW66aKChXoBFZlMjjo6yYSZsShpXqbb9oX6HH2BRisFzb86fGf+Of+ccUPOlLbtb8Pc2d3bP8gcWkfHJ6dn2dx5S4mZpNikggvZcYlCzgJsaqY5dkKJxHc5tt1pbdlvv6FUTASvehFi3yejgA0ZJTpBg+xl1HMF93yix1ap95wYPVKy4kG2aJftlfLporIuirBWY5Azaj1P0JmPgaacKNUl95N+NCFSM8oxtnozhSGhUzLCaBV7ExFfLTMkUKGmYhZolFGdzOtESzZP3qHiyLFTHrXw3RTUY3+TLW8m7jwNpRqqNPWE3qIuG7FgBfUYhcRkxoJj5OGQBWy5yK0MfCQkS8X4x4xuNLqE8340X8RWsvbK9pLTRcspV+7KzotTrD6uPyAD11CAG6jAA1ThCRrQBArv8AGf8GX8mFdm3iz8HTWNtecCNmTe/gLe+cM7</latexit>
<latexit sha1_base64="+DxAfQhFxclyCK+INJqlq2uZVZo=">AAACbnicZZHLTsJAFIYP9Yb1BpK4MUYjLFiRtpq4JbJxQ4KJXBJKyHQ4wMC008wMpk3Ds7jVR/ItfAQLEhPovzr5zpw5//zjhZwpbVnfOWNv/+DwKH9snpyenV8UipcdJRaSYpsKLmTPIwo5C7CtmebYCyUS3+PY9eaNVb/7jlIxEbzpOMSBTyYBGzNKdIqGhVLieoKPfKKnZsUNp6xiLoeFslWz1rrLFvamKMNGrWEx13BHgi58DDTlRKk+eZwNkhmRmlGOS9NdKAwJnZMJJmvP24j4amUghQo1FYtAo0yaJGoSLVmUPkItE8fKzKjY9zJQT/1ttrqZeFEWSjVWWToSeod6bMKCNdRTFBLTHTHHZIRjFrBVijse+ERIlrHxjxndavQJ54MkipdmGru9G3K26Dg1+6HmvDrl+vPmA/JwDfdQBRueoA4v0II2UIjhAz7hK/djXBk3xu3fUSO3mSnBlozqL2Lfwh0=</latexit>
(c) SLDA (Jagarlamudi et al., 2012).
Figure 1: Graphical models of topic models.
hashes, and names of malware. In this work, we ex-
tracted IPv4 addresses and URLs from text using reg-
ular expressions and used them along with the above-
mentioned preprocessed words to train the topic mod-
els. In addition, we also extracted MD5, SHA1,
SHA256, and SHA512 hashes of (malicious) files as
IOC.
In addition to general stop words, we removed
some words extracted using the LLDA model. When
training models with LLDA for labeled text, the
model assigns the corresponding label of text and the
label common topic to each token. Words that appear
in the category common topic also appear in other cat-
egories uniformly, and thus should not be set as seed
words.
4 EXPERIMENTS
We evaluated LDA, LLDA, and SLDA models trained
using labeled cybersecurity text. We conducted exper-
iments on overlapping (or soft) clustering using multi-
labeled text and predictions using test text (i.e., text
not used to train the models).
4.1 Data
We used the following 405 security text from internal
and external sources in the experiments.
45 security incident reports written from the be-
ginning of 2016 to March 2019 managed in our
CERT.
120 blog posts in Trend Micro Security Blog (in
Japanese)
3
.
3
https://blog.trendmicro.co.jp
120 blog posts in Cisco Japan Blog categorized as
security research
4
.
120 blog posts filtered by LANGUAGE: Japanese,
SYMANTEC BLOGS: Security Response in
Symantec Connect
5
.
For the blogs by each security vendor, we col-
lected the recent 120 blog text posted before the end
of September 2019.
In our CERT, the members summarize the results
of incident investigations and responses for incident
handling interactions with other teams (SOC or the
network operations center) or the person who con-
tacted the CERT. The reports are stored as an Excel
file. We analyzed the following types of text in the
reports using the topic models: abstract of incident,
status of response, cause of incident and possible at-
tacks, information on the compromised system (e.g.,
IP address, network environment, OS version), attack
(source) information (e.g., IP address/domain, name
of malware), and measures implemented to prevent
recurrence.
Next, we consider suitable categories for classify-
ing security text with topic models. In this paper, we
define categories of cybersecurity incident and attack
that correspond to some standards that are commonly
recognized.
Specifically, we set the following 6 categories of
incident based on NIST SP800-61 Revision 1
6
and
FIRST
7
in Table 1, and 9 categories of attack based
on MITRE CAPEC
8
in Table 2.
4
https://gblogs.cisco.com/jp/category/security/research/
5
https://www.symantec.com/connect/search
6
https://www.fismacenter.com/SP800-61rev1.pdf
7
https://www.first.org/resources/guides/csirt case
classification.html
8
https://capec.mitre.org
A Study of Classification of Texts into Categories of Cybersecurity Incident and Attack with Topic Models
641
Table 1: Incident categories.
Id Category
0 Others
1 Unauthorized Access, Compromised In-
formation/Asset, Unlawful Activity (Theft,
Fraud, Human Safety, Child Porn), Espi-
onage
2 DoS
3 Malware
4 Scan, Probe, Attempted Access, Reconnais-
sance
5 Improper Usage, Policy Violations
Table 2: Attack categories.
Id Category
0 Others
1 Social Engineering (Phising, Targeted At-
tack, Information Elicitation, Pretexting,
Identity Fraud)
2 DoS
3 Vulnerability Exploit,
4 Malware, File/Configuration/Environment
Manipulation, Manipulation During Distri-
bution
5 Inject Unexpected Items (XSS, Command
Injection, Targeted Malware)
6 Employ Probabilistic Techniques (Brute
Force, Fuzzing)
7 Collect and Analyze Information (Scan,
Sniffing, Fingerprinting, Excavation
8 Subvert Access Control (Session Hijacking,
Cross Site Request Forgery, MITM)
For the incident categories, we merged the cate-
gories by NIST and FIRST. We basically define each
category of attacks corresponding to mechanisms of
attack in MITRE CAPEC.
These categories are rather general and may be
unsuitable for classifying incidents in detail, unlike
those described in the guide
9
and the Cyber Threat
Categories by SurfWatch Labs Inc.
10
. In the incident
report, we must check the categories of incidents and
attacks that can be used to label reports to classify
them according to incident type. Because we focus
on observing our security report data and classifying
them, we use the required set.
Although each blog post is tagged, the tags are
rather general, such as cyber attack, attack methodol-
9
https://www.first.org/resources/guides/csirt case
classification.html
10
https://www.surfwatchlabs.com/threat-categories
ogy, or too much detailed such as malware families
for few special documents. Thus, it is thus appro-
priate for labeling according to distinct attack types
and computing good classifier with topic models. We
manually labeled the security text and set appropri-
ate multi-labels at most 4. These multi-labels are re-
garded as ground truth data in our experiments.
4.2 Measurements
To measure overlapping clustering and predict test
text with the topic models, we evaluated the mod-
els using purity, inverse purity, F1-score, and normal-
ized mutual information (NMI). Specifically, we use
macro (inverse) purity and macro F1-score which is
the harmonic mean of purity and inverse purity. Let
C be the cluster sets formed by clustering with the
topic models, and C
be the ground truth class sets.
Then the macro purity and inverse purity correspond
to F
C,C
and F
C
,C
, respectively where F
X,Y
is defined
as Eq. 7 in (Lutov et al., 2019).
We also use normalized mutual information
NMI(C,C
) to evaluate overlapping clusterings. De-
tailed formulae to compute NMI are described in (Lu-
tov et al., 2019) (see Section IV.C.1 and Eq.11, 12).
We note that we did not evaluate generalized NMI but
naive NMI in the experiments.
4.3 Initial Seed Words
The quality of the SLDA model greatly depends on
the defined seed words. We first observed words that
frequently appeared for the given ground truth labels.
In (Jagarlamudi et al., 2012, Section 2.4), the authors
describe the technique to select initial seed words au-
tomatically by using information gain.
We computed the information gain of words in
text and their ground truth labels, and extract top
ranked 15 words for each category of incident and at-
tack. The sampled seed words translated into English
for the incident and attack topic categories are defined
as shown in Tables 3 and 4. The categories are sim-
plified and the words in bold and italic style were re-
moved or added for evaluating effects of seed words
in the experiments. The words which are not written
by bold style are sampled extracted words with infor-
mation gain. We describe how we set the seed words
in more detail in Section 4.5.
4.4 Clustering Results
We conducted an experiment with overlapping clus-
tering because the labeled text belongs to one or more
categories. To classify the text into multi-categories,
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
642
Table 3: Incident categories and seed words.
Category Seed words
Others ip, “blog author”, supervision , exe, windows, evangelist, system, microsoft, infec-
tion, malware, round up article, comprehension
Unauthorized Access indicator, infection, vulnerable, iocs, compromise, “sha1 hash”,
dnspionage, suspicious, micro, trend, vulnerability, disclosure of information
DoS present, blog, denial, research, prevent, newsroom, vmx, snortsnort
Malware infection, malware, indicator, download, screenshot, ip, ioc, scan, exe, feature,
firepower
Scan, Attempted Access udp, dictionary attack, port, ssh, ip address, ddos attack, tcp, router, backdoor,
jump server, flood, relay, indicators, bounty
Improper Usage coinhive, rip, virus scan, mac, laboratory, isolation, free, subspecies,
confidential information, personal information, license, version, crack ,
“experimental product”
we extracted the topic category for which the inferred
topic ratio is higher than a given threshold in order of
descending ratios, and we limited the number of in-
ferred topics for each text. Table 5 shows the results
of macro F1-score and NMI for overlapping cluster-
ing.
We denote the number of topic categories as K;
K = 6 for incident categories and K = 9 for attack cat-
egories. We used the standard hyperparameters val-
ues α = 50/K,β = 0.01 and π
k
= 0.7 (Jagarlamudi
et al., 2012, Section 2.1), and symmetric Dirichlet
distributions. Although we evaluated the clustering
results varying the maximum numbers of inferred top-
ics from 1 to 4, we only showed the cases when then
number is 1 or 4. The results for which the threshold
is 0 and the number of inferred topics is 1 correspond
to those of hard clustering.
We can see that SLDA outperformed LDA in all
cases. When the maximum number of inferred topics
is 4, the F1-scores for threshold 0.01/K and 0.1/K
are higher than the F1-score for threshold 1/K. Ac-
tually, the inverse purity become higher unreasonably
since most of the samples are classified into 4 cate-
gories, and such a classifier is useless for identifying
topics of security text. In these cases, the NMI values
become lower that means the clusterings are not good
comparing with the ground truth class sets. In our ex-
periments, including the following evaluation for test
text, we set the threshold to 1/K and the maximum
number of inferred topics to 4.
4.5 Update Seed Words
Here, we describe experiments for updating the seed
words by observing the clustering results. For
the trained models with SLDA, we manually corre-
sponded the clusters to the incident or attack cate-
gories by the document-topic distributions and the
seed-topic distributions of the model since SLDA is
an unsupervised algorithm. Then we can evaluate
how the SLDA model classifies security text into
multi-categories. We modified the seed words and
evaluated clusterings in the following steps.
Initial Automatic extraction by computing infor-
mation gain using the ground truth labels of text.
Step 1 We manually remove words that re-
duce overlapping clustering accuracy such as fre-
quently used common words in several categories
or peculiar words.
Step 2 After training the SLDA model with seed
words defined in Step 1, we select few words ex-
tracted by information gain with classification re-
sults.
Step 3 We manually proper words based on
heuristic knowledge such as an IP address, IOC,
or cybersecurity proper words from security intel-
ligences from internal and external sources.
In Tables 3 and 4, we underline the words that are
actually used in the experiments. For the extracted
words in the initial phase (the non-bold words), the
italic words are removed in Step 1. We then added the
bold words that are selected in Step 2 and 3 together.
We note that the double-quoted words are obfuscated
since these words indicate individual or sensitive in-
formations.
Tables 6 shows the clustering results with F1-
scores and NMI for the seed words defined in each
step.
The evaluated values for the seed words in Step
1 are worse than those for initial seed words. How-
ever, it is necessary to remove some words in Step 1
since the initial seed words totally depend on ground
truth labels of the security text. The F1-scores for the
A Study of Classification of Texts into Categories of Cybersecurity Incident and Attack with Topic Models
643
Table 4: Attack categories and seed words.
Category Seed words
Others file, found, code, vulnerability, exploit, version, execution, remote,
round up article
Social Engineering suspicious, mail, vulnerable, cve, japan, attacker, evangelist, “blog au-
thor”, personal information, disclosure, “IPv4 address (internal)”
DoS ddos attack, ddos, applet, not found, ip address, backdoor, installation,
udp, tcp, dictionary attack, flood, bot, miori, mirai, jump server
Vulnerability Exploit cve, vulnerability, rule, trick, arbitrarily, exploit, spotlight, strategy, advi-
sory, bug, release
Malware infection, malware, indicator, download, trojan, exe, feature, ioc,
trojan, powershell, firepower
Inject Unexpected Items electronic commerce, ticketmaster, magecart, dpi, security, fashion,
constructor, object, context
Employ Probablistic Techniques dictionary attack, pcastle, yowai, hakai, distributed, put, ssh, gafgyt,
damage, blog, page, ordinary, port, brute, polycom
Collect and Analyze Information layer, lack, exposure, port, udp, shodan, upnp, unit, home, recent, install,
search engine, ngips, disconnection, “public web server (internal)”
Subvert Access Control dynamic, “IPv4 address (external)”, aptdnsdns, intersecdns, authority,
Syria, cctld, rewrite, redirect, domain, electric company,
dnspionage, path, rewrite
Table 5: F1-scores and NMI in parenthesis for various thresholds and maximum numbers of inferred topics.
(threshold, maximum number of inferred topics)
Category Model (0,1) (0.01/K, 4) (0.1/K, 4) (1/K, 4)
Incident
LDA 0.514 (0.097) 0.694 (0.007) 0.66 (0.01) 0.551 (0.072)
Seeded LDA 0.563 (0.103) 0.68 (0.014) 0.659 (0.021) 0.595 (0.074)
Attack
LDA 0.536 (0.137) 0.667 (0.018) 0.657 (0.021) 0.601 (0.072)
Seeded LDA 0.597 (0.145) 0.761 (0.021) 0.761 (0.03) 0.654 (0.11)
words in Step 3 are slightly higher than those for the
initial words.
4.6 Test Texts with Trained Models
SLDA is an unsupervised algorithm and thus an in-
ferred topic cannot be identified with an actual cat-
egory. In contrast, the inferred topics obtained with
LLDA correspond to actual categories. By corre-
sponding inferred topics to ground truth categories,
we evaluated clustering in terms of precision, recall,
and F1-score for SLDA and LLDA. We computed mi-
cro precision, recall, and F1-score for the evaluation.
The text used for training and testing LLDA contained
the label common topic. We omitted this label when
extracting inferred topics.
Here, we show the results of classification of the
incident reports using the model trained using blog
posts. For the incident reports and the blog posts, we
used 270 text for training the model and 135 text as
the test data. The results are shown in Table 7.
SLDA achieved higher precision, recall, and F1
values compared with those for LLDA for all cases.
Nevertheless the classifying accuracy of SLDA is not
at a practical level. We should therefore enhance the
SLDA model by improving seed words and other hy-
perparameters.
4.7 Clustering Analysis
Here, we briefly describe the cluster analysis for the
SLDA topic model and effects by the seed words. In
this paper, we only show the correlations between the
clusters and the ground truth labels for the attack cate-
gories because of limitations of space. Figure 2 shows
the hierarchically-clustered heatmap with the matrix
for ground truth multi-labels of text and clustered text
with the SLDA model. We used Ward’s method and
the standard euclidean distance in hierarchical cluster
analysis.
The text that are tagged ground truth labels “Mal-
ware”, “Social Engineering”, or “Vulnerability Ex-
ploit” by the SLDA with the initial seed are classified
into similar cluster sets. Thus, it is hard to distinguish
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
644
Table 6: Comparing results of F1-score and NMI in parenthesis for each set of seed words.
Seed words
Category Model Initial Step 1 Step 2 Step 3
Incident
LDA 0.551 (0.072)
Seeded LDA 0.595 (0.074) 0.579 (0.073) 0.588 (0.08) 0.644 (0.086)
Attack
LDA 0.601 (0.072)
Seeded LDA 0.654 (0.11) 0.653 (0.106) 0.629 (0.116) 0.673 (0.094)
Table 7: Evaluation of topic models using test text.
Incident categories Attack categories
Seed words Model precision recall F1-score precision recall F1-score
Initial
LLDA 0.175 0.089 0.118 0.115 0.065 0.083
SLDA 0.298 0.354 0.324 0.314 0.43 0.363
Step 3
LLDA 0.241 0.133 0.171 0.137 0.085 0.105
SLDA 0.312 0.411 0.355 0.361 0.46 0.404
clusters each other for such attack categories. For the
results using the SLDA model with the Step 3 seed
set, we can see that the clusters for the text in the cate-
gory “Vulnerability Exploit” are slightly distinguish-
able from those for other categories “Malware” and
“Social Engineering”.
Though the effects by using different seed sets are
not explicitly shown in the stochastic measurement
results for the models and cluster analysis, we remark
how we chose the seed words to be used. We added
the some words for the attack category “Social Engi-
neering” by observing frequently appeared words in
our incident reports with computing information gain
and heuristic knowledges. Furthermore, we could not
classify the text well when we remove the ambigu-
ous seed words which occurred in multiple categories
such as “cve” in the categories “Social Engineering”
and “Vulnerability Exploit”. In our experiment, the
clustering results are better when we set some seed
words for related multi-categories.
5 CONCLUSION AND FUTURE
WORK
We applied several LDA-based topic models to the
classification of security text and extraction of intelli-
gence from the text. This work was motivated by an-
alyzing internal data (incident reports) with an SLDA
model trained with external data (e.g., security blog
posts). The results showed that SLDA overcomes
naive LDA in terms of overlapping clustering, and
SLDA classified the test text with higher accuracy
than LLDA did. Although the results of SLDA are
unsatisfactory to classify security text in a real-world
situation. The followings are future works to enhance
the SLDA model.
We should modify the stop words so that the
SLDA model can classify security text more distin-
guishably. There are many words that have common
meaning or concept all over the categories since the
text used in our experiments are based on cybersecu-
rity topics. We furthermore should consider how we
can define categories of appropriate size to classify
security text well. Although we used standard cate-
gories in this paper, we will need to consider subdivi-
sion of the categories and its hierarchical structure.
To enhance SLDA models, further experiments
for various seed sets are needed. In addition, we
should tune the hyperparameters of the Dirichlet dis-
tributions α and β and timing of updating these pa-
rameters in the sampling algorithms.
To make the models suitable for systems dedicated
to handling incidents continuously, the seed words
should be updated depending on the situation. Hu et
al. (Hu et al., 2014) proposed a framework that users
can use to iteratively refine topics by observing words
inferred by LDA. It would be helpful to develop a
framework that allows users to interactively refine the
model with seed words. The well refined model and
the extracted intelligences should lead to a system to
handle cybersecurity incidents automatically.
ACKNOWLEDGEMENTS
This work was partially supported by JST CREST
Grant Number JPMJCR1783 and Suematsu prize of
A Study of Classification of Texts into Categories of Cybersecurity Incident and Attack with Topic Models
645
(a) Initial seed words (b) Step 3 seed words
Figure 2: Hierarchically-clustered heatmap for the attack categories for the initial and step3 seed words.
Tokyo Tech, Japan.
REFERENCES
Andrade, R. and Torres, J. (2018). Enhancing intelli-
gence soc with big data tools. In 2018 IEEE 9th An-
nual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), pages 1076–
1080.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). La-
tent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022.
Chambers, N., Fry, B., and McMasters, J. (2018). Detecting
denial-of-service attacks from social media text: Ap-
plying NLP to computer security. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers),
pages 1626–1635, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.
Deliu, I., Leichter, C., and Franke, K. (2017). Extracting
cyber threat intelligence from hacker forums: Sup-
port vector machines versus convolutional neural net-
works. In 2017 IEEE International Conference on Big
Data (Big Data), pages 3648–3656.
Hu, Y., Boyd-Graber, J., Satinoff, B., and Smith, A.
(2014). Interactive topic modeling. Machine Learn-
ing, 95(3):423–469.
Jagarlamudi, J., Daum
´
e, III, H., and Udupa, R. (2012).
Incorporating lexical priors into topic models. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL ’12, pages 204–213, Stroudsburg, PA,
USA. Association for Computational Linguistics.
Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004). Ap-
plying conditional random fields to Japanese morpho-
logical analysis. In Proceedings of EMNLP 2004,
pages 230–237, Barcelona, Spain. Association for
Computational Linguistics.
Li, X., Li, C., Chi, J., Ouyang, J., and Li, C. (2018). Data-
less text classification: A topic modeling approach
with document manifold. In Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management, CIKM ’18, page 973–982,
New York, NY, USA. Association for Computing Ma-
chinery.
Loper, E. and Bird, S. (2002). Nltk: The natural lan-
guage toolkit. In Proceedings of the ACL-02 Work-
shop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational
Linguistics - Volume 1, ETMTNLP ’02, pages 63–
70, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Lutov, A., Khayati, M., and Cudr
´
e-Mauroux, P. (2019). Ac-
curacy evaluation of overlapping and multi-resolution
clustering algorithms on large datasets. In 2019 IEEE
International Conference on Big Data and Smart
Computing (BigComp), pages 1–8.
Nagai, T., Inui, T., Takita, M., Furumoto, K., Shiraishi, Y.,
Takano, Y., Mohri, M., and Morii, M. (2018). Cluster-
ing security blog posts using guided-topic model for
threat analysis. In Proceedings of Computer Security
Symposium 2018, volume 2018, pages 481–488.
Ramage, D., Hall, D., Nallapati, R., and Manning, C. D.
(2009). Labeled lda: A supervised topic model for
credit attribution in multi-labeled corpora. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1 - Volume 1,
EMNLP ’09, pages 248–256, Stroudsburg, PA, USA.
Association for Computational Linguistics.
Singh, V. and amrrs (2017). Guidedlda: Guided topic mod-
eling with latent dirichlet allocation. https://github.
com/vi3k6i5/guidedlda, Accessed: 2019-11-15.
Zhong, C., Yen, J., Liu, P., and Erbacher, R. F. (2019).
Learning from experts’ experience: Toward auto-
mated cyber security data triage. IEEE Systems Jour-
nal, 13(1):603–614.
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
646