Shainline, 2019). Bidirectional optoelectronic
interfaces can be made on the basis of
superconducting single-photon detectors and
cryogenic n-Trons (Buckley, 2017; Bogatskaya,
2018; Zheng, 2019).
The obtained characteristics of the “real” ReLU
give reason to believe that the developed scheme can
be suitable for the physical implementation of
convolutional opto-superconducting neural networks.
ACKNOWLEDGEMENTS
The analytical study of the proposed concept was
supported by RFBR (19-37-90020, 19-02-00981) and
President Grant (MD-186.2020.8). Numerical
calculations were done with support of Russian
Science Foundation (18-72-10118). Also Schegolev
is appreciative for the support to the Foundation for
the advancement of theoretical physics and
mathematics “BASIS”.
REFERENCES
Soloviev, I. I., Schegolev, A. E., Klenov, N. V., Bakurskiy,
S. V., Kupriyanov, M. Y., Tereshonok, M. V., Golubov,
A. A. (2018). Adiabatic superconducting artificial
neural network: Basic cells. Journal of applied physics,
124(15), 152113.
Klenov, N. V., Schegolev, A. E., Soloviev, I. I., Bakurskiy,
S. V., Tereshonok, M. V. (2018). Energy Efficient
Superconducting Neural Networks for High-Speed
Intellectual Data Processing Systems. IEEE
Transactions on Applied Superconductivity, 28(7), 1-6.
Schegolev, A. E., Klenov, N. V., Soloviev, I. I.,
Tereshonok, M. V. (2016). Adiabatic superconducting
cells for ultra-low-power artificial neural networks.
Beilstein journal of nanotechnology, 7(1), 1397-1403.
Szu H. H. (1990). Superconducting neural network
computer and sensor array. U.S. Patent documents,
US4943556A.
Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y. (2003).
Subject independent facial expression recognition with
robust face detection using a convolutional neural
network. Neural Networks, 16(5-6), 555-559.
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A.,
Douglas, R. J., Seung, H. S. (2000). Digital selection
and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405(6789), 947.
Glorot, X., Bordes, A., Bengio, Y. (2011, June). Deep
sparse rectifier neural networks. In Proceedings of the
fourteenth international conference on artificial
intelligence and statistics (pp. 315-323).
Nair, V., Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine
learning (ICML-10) (pp. 807-814).
Maas, A. L., Hannun, A. Y., Ng, A. Y. (2013, June).
Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml (Vol. 30, No. 1, p. 3).
Shainline, J. M., Buckley, S. M., Mirin, R. P. and
Nam S. W. (2017). Superconducting Optoelectronic
Circuits for Neuromorphic Computing. Phys. Rev.
Applied 7, 034013.
Shainline, J. M., Buckley, S. M., Nader, N., Gentry, C. M.,
Cossel, K. C., Cleary, J. W., Popović, M.,
Newbury, N. R., Nam, S. W. and Mirin, R. P. (2017).
Room-temperature-deposited dielectrics and
superconductors for integrated photonics. Optics
Express 25(9), pp. 10322-10334.
Shainline, J. M., Buckley, S. M., McCaughan, A. N.,
Chiles, J. T., Salim, A. J., Beltran, M. C., Donnelly, C.
A., Schneider, M. L., Mirin, R. P. and Nam S. W.
(2019). Superconducting optoelectronic loop neurons.
Journal of Applied Physics 126, 044902.
Buckley, S., Chiles, J., McCaughan, A. N., Moody, G.,
Silverman, K. L., Stevens, M. J., Mirin, R. P., Nam, S.
W. and Shainline J. M. (2017). All-silicon light-
emitting diodes waveguide-integrated with
superconducting single-photon detectors. Appl. Phys.
Lett. 111, 141101.
Bogatskaya, A. V., Klenov, N. V., Popov, A. M. and
Tereshonok, M. V. (2018). Resonance tunneling of
electromagnetic waves for enhancing the efficiency of
bolometric photodetectors. Technical Physics Letters,
44(8):667–670.
Zheng, K., Zhao, Q.-Y., Kong, L.-D., Chen, S., Lu, H.-Y.-
Bo, Tu, X.-C., Zhang, L.-B., Jia, X.-Q., Chen, J.,
Kang L. and Wu, P.-H. (2019). Characterize the
switching performance of a superconducting nanowire
cryotron for reading superconducting nanowire single
photon detectors. Scientific Reports volume 9, Article
number: 16345.