active layer structure and the operating temperature
were in good agreement with those obtained in the
experiments in the references and those obtained with
our QCLs.
Furthermore, the active layer was designed to
increase the gain using a simulator, and it was shown
that the output could be improved by reducing the
barrier thicknesses in the active layer. We fabricated
QCLs with this structure and evaluated their output
wavelength and power. As a result, the EL emission
intensity was increased to 1.4 times that of the
previous structure QCL, and it was shown that the
simulator design method is effective for the structure
design of QCLs.
ACKNOWLEDGEMENTS
This work was supported by Innovative Science and
Technology Initiative for Security, ATLA, Japan.
REFERENCES
Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson,
A., & Cho, A. Y. (1994). Quantum cascade laser.
Science, 264, 553–556.
Jirauschek, C., & Kubis, T. (2014). Modeling techniques
for quantum cascade lasers. Appl. Phys. Rev., 1, 011307.
Grange, T. (2015). Contrasting influence of charged
impurities on transport and gain in terahertz quantum
cascade lasers. Phys. Rev. B, 92, 241306–31–5.
Kirch, D., Chang, C.-C., Boyle, C., Mawst, L. J., Lindberg,
D., Earles, T., & Botez, D. (2015). Highly temperature
insensitive, low threshold-current density (λ = 8.7–8.8
μm) quantum cascade lasers. Appl. Phys. Lett., 106,
151106–1–5.
Yu, J. S., Slivken, S., & Razeghi, M. (2010). Injector
doping level-dependent continuous-wave operation of
InP-based QCLs at λ ~ 7.3 μm above room temperature.
Semicond. Sci. Technol., 25, 125015–1–5.
Wang, C. Y., Kuznetsova, L., Gkortsas, V. M., Diehl, L.,
Kärtner F. X., Belkin, M. A., Belyanin, A., Li, X., Ham,
D., Schneider, H., Grant, P., Song, C. Y., Haffouz, S.,
Wasilewski, Z. R., Liu, H. C., & Capasso, F. (2009).
Mode-locked pulses from mid-infrared quantum
cascade lasers. Opt. Express, 17 (15), 12929–12943.
Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon,
J. N., Hutchinson, A. L., Chu, S. N. G., & Cho, A. Y.
(1996). High power mid-infrared (λ ~ 5 μm) quantum
cascade lasers operating above room temperature. Appl.
Phys. Lett., 68, 3680–3682.
Evans, A., Darvish, S. R., Slivken, S., Nguyen, J., Bai, Y.,
& Razeghi, M. (2007). Buried heterostructure quantum
cascade lasers with high continuous-wave wall plug
efficiency. Appl. Phys. Lett., 91, 071101–1–3.
Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., Chu,
S.-N. G., & Cho, A. Y. (1998). Short wavelength
quantum cascade laser based on strained compensated
InGaAs/AlInAs. Appl. Phys. Lett., 72, 680–682.
Aldukhayel, A., Jin, S. R., Marko, I. P., Zhang, S. Y., Revin,
D. G., Cockburn, J. W., & Sweeney, S. J. (2013).
Investigations of carrier scattering into L-valley in λ =
3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers using
high hydrostatic pressure. Phys. Status Solidi B, 250
(4), 693–697.
Wen, Y., Quanyong, L., Wanfeng, L., Jinchuan, Z., Lijun,
W., Junqi, L., Lu, L., Fengqi, L., & Zhanguo, W.
(2011). Porous waveguide facilitated low divergence
quantum cascade laser. Semicond., 32 (6), 064008.