recognition. IEEE transactions on pattern analysis
and machine intelligence, 37(9):1904–1916.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. (2017). Flownet 2.0: Evolution of optical
flow estimation with deep networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2462–2470.
Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T.,
Zhang, C., Wang, Z., Wang, R., Wang, X., et al.
(2018). T-cnn: Tubelets with convolutional neural net-
works for object detection from videos. IEEE Trans-
actions on Circuits and Systems for Video Technology,
28(10):2896–2907.
Kang, K., Ouyang, W., Li, H., and Wang, X. (2016). Ob-
ject detection from video tubelets with convolutional
neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 817–825.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Lee, B., Erdenee, E., Jin, S., Nam, M. Y., Jung, Y. G., and
Rhee, P. K. (2016). Multi-class multi-object tracking
using changing point detection. In European Confer-
ence on Computer Vision, pages 68–83. Springer.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017a). Feature pyramid networks
for object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2117–2125.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017b). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Liu, D., Wang, Y., Chen, T., and Matson, E. T. (2019). Ap-
plication of color filter and k-means clustering filter
fusion in lane detection for self-driving car. In Pro-
ceedings of The Third IEEE International Conference
on Robotic Computing.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Ma, C., Huang, J.-B., Yang, X., and Yang, M.-H. (2015).
Hierarchical convolutional features for visual track-
ing. In Proceedings of the IEEE international con-
ference on computer vision, pages 3074–3082.
Ramanagopal, M. S., Anderson, C., Vasudevan, R., and
Johnson-Roberson, M. (2018). Failing to learn: au-
tonomously identifying perception failures for self-
driving cars. IEEE Robotics and Automation Letters,
3(4):3860–3867.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Ren, S., He, K., Girshick, R., Zhang, X., and Sun, J. (2017).
Object detection networks on convolutional feature
maps. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(7):1476–1481.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Uijlings, J. R., Van De Sande, K. E., Gevers, T., and
Smeulders, A. W. (2013). Selective search for object
recognition. International journal of computer vision,
104(2):154–171.
Wang, Y., Liu, D., Jeon, H., Chu, Z., and Matson, E.
(2019). End-to-end learning approach for autonomous
driving: A convolutional neural network model. In
Proceedings of the 11th International Conference
on Agents and Artificial Intelligence - Volume 2:
ICAART, pages 833–839. INSTICC, SciTePress.
Zeng, X., Ouyang, W., Yang, B., Yan, J., and Wang, X.
(2016). Gated bi-directional cnn for object detection.
In European Conference on Computer Vision, pages
354–369. Springer.
Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). Shuf-
flenet: An extremely efficient convolutional neural
network for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856.
Zhu, X., Dai, J., Yuan, L., and Wei, Y. (2018). Towards high
performance video object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7210–7218.
Zhu, X., Wang, Y., Dai, J., Yuan, L., and Wei, Y. (2017a).
Flow-guided feature aggregation for video object de-
tection. In Proceedings of the IEEE International
Conference on Computer Vision, pages 408–417.
Zhu, X., Xiong, Y., Dai, J., Yuan, L., and Wei, Y. (2017b).
Deep feature flow for video recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2349–2358.
Zitnick, C. L. and Doll
´
ar, P. (2014). Edge boxes: Locating
object proposals from edges. In European conference
on computer vision, pages 391–405. Springer.
Object Detection for Autonomous Driving: Motion-aid Feature Calibration Network
239