effective application of game theory in agents belief
verification.
ACKNOWLEDGEMENTS
We appreciate any comments that help in making this
paper a great one. Our thanks also goes to Petroleum
Technology Development Fund (PTDF) of Nigeria
for sponsoring this project.
REFERENCES
Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. page 10.
Cort
´
es, J. and Egerstedt, M. (2017). Coordinated con-
trol of multi-robot systems: A survey. SICE Jour-
nal of Control, Measurement, and System Integration,
10(6):495–503.
Endsley, M. R. (1995). Toward a theory of situation aware-
ness in dynamic systems. [Online; accessed 2019-11-
14].
Ferrante, E., Turgut, A. E., Du
´
e
˜
nez-Guzm
´
an, E., Dorigo,
M., and Wenseleers, T. (2015). Evolution of self-
organized task specialization in robot swarms. PLOS
Computational Biology, 11(8):e1004273.
Fioretto, F., Pontelli, E., and Yeoh, W. (2018). Distributed
constraint optimization problems and applications: A
survey. Journal of Artificial Intelligence Research,
61:623–698. arXiv: 1602.06347.
Fransman, J., Sijs, J., Dol, H., Theunissen, E., and
De Schutter, B. (2019). Bayesian-dpop for continu-
ous distributed constraint optimization problems. AA-
MAS ’19, page 1961–1963, Richland, SC. Interna-
tional Foundation for Autonomous Agents and Mul-
tiagent Systems. event-place: Montreal QC, Canada.
Gerkey, B. and Mataric, M. (2002). Sold!: auction meth-
ods for multirobot coordination. IEEE Transactions
on Robotics and Automation, 18(5):758–768.
Hackney, C. R. and Clayton, A. I. (2015). Unmanned aerial
vehicles (uavs) and their application in geomorphic
mapping.
Khan, A., Yanmaz, E., and Rinner, B. (2015). Information
exchange and decision making in micro aerial vehicle
networks for cooperative search. IEEE Transactions
on Control of Network Systems, 2(4):335–347.
Lumelsky, V. and Harinarayan, K. (1997). Decentral-
ized motion planning for multiple mobile robots: The
cocktail party model. Autonomous Robots, 4(1):121–
135.
Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2004).
Distributed algorithms for dcop: A graphical-game-
based approach. page 8.
Merino, L., Caballero, F., Dios, J. R. M.-d., Ferruz, J., and
Ollero, A. (2006). A cooperative perception system
for multiple uavs: Application to automatic detection
of forest fires. Journal of Field Robotics, 23(3-4):165–
184.
Merino, L., Caballero, F., Mart
´
ınez-de Dios, J. R., Maza, I.,
and Ollero, A. (2010). Automatic forest fire monitor-
ing and measurement using unmanned aerial vehicles.
page 15.
Pavlin, G., de Oude, P., Maris, M., Nunnink, J., and Hood,
T. (2010). A multi-agent systems approach to dis-
tributed bayesian information fusion. Information Fu-
sion, 11(3):267–282.
Reynolds, C. W. (1987). Flocks, herds and schools: A
distributed behavioral model. SIGGRAPH ’87, page
25–34, New York, NY, USA. ACM. [Online; accessed
2019-04-21].
Rivera, d. D. S., Alcarria, R., Andr
´
es, d. D. M., S
´
anchez-
Picot, l., S
´
anchez, B. B., and Robles, T. (2016).
Distributed query results and iot data in a publish-
subscribe network implementing user notifications.
2016 30th International Conference on Advanced In-
formation Networking and Applications Workshops
(WAINA), pages 778–783.
Romanycia, M. (2019). Netica-j reference manual. page
119.
Saicharan, B., Tiwari, R., and Roberts, N. (2016). Multi
objective optimization based path planning in robotics
using nature inspired algorithms: A survey. pages 1–
6. 2016 IEEE 1st International Conference on Power
Electronics, Intelligent Control and Energy Systems
(ICPEICES).
Setter, T. and Egerstedt, M. (2017). Energy-constrained co-
ordination of multi-robot teams. IEEE Transactions
on Control Systems Technology, 25(4):1257–1263.
Stanton, N. A., Stewart, R., Harris, D., Houghton, R. J.,
Baber, C., McMaster, R., Salmon, P., Hoyle, G.,
Walker, G., Young, M. S., Linsell, M., Dymott, R.,
and Green, D. (2006). Distributed situation awareness
in dynamic systems: theoretical development and ap-
plication of an ergonomics methodology. Ergonomics,
49(12-13):1288–1311.
Turpin, M., Michael, N., and Kumar, V. (2014). Capt: Con-
current assignment and planning of trajectories for
multiple robots. The International Journal of Robotics
Research, 33(1):98–112.
Vasile, M. and Zuiani, F. (2011). Multi-agent collabora-
tive search : an agent-based memetic multi-objective
optimization algorithm applied to space trajectory de-
sign. Proceedings of the Institution of Mechanical En-
gineers, Part G: Journal of Aerospace Engineering,
225:1211–1227.
Wang, J. and Xu, Z. (2014). Bayesian inferential reasoning
model for crime investigation. page 11.
Williamson, J. (2001). Bayesian networks for logical rea-
soning. page 19.
Yan, Z., Jouandeau, N., and Ch
´
erif, A. A. (2011). Multi-
robot decentralized exploration using a trade-based
approach.
Yanguas-Rojas, D. and Mojica-Nava, E. (2017). Explo-
ration with heterogeneous robots networks for search
and rescue.
Yanmaz, E., Yahayanajeed, S., and Bernerd, R. (2017).
Drone networks: Communications, coordination, and
sensing. Elsevier.
Zhou, X., Wang, W., Tao, W., Xiaboo, L., and Tian, J.
(2018). Continuous patrolling in uncertain environ-
ment with the uav swarm. [Online; accessed 2019-08-
18].
Conflicts Resolution and Situation Awareness in Heterogeneous Multi-agent Missions using Publish-subscribe Technique and Inferential
Reasoning
851