the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.
Hu, Z., McCauley, R., Schaeffer, S., and Deng, X. (2009).
Aerodynamics of dragonfly flight and robotic design.
2009 IEEE International Conference on Robotics and
Automation, pages 3061–3066.
Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely
connected convolutional networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269.
Khoreva, A., Benenson, R., Hosang, J., Hein, M., and
Schiele, B. (2017). Simple does it: Weakly supervised
instance and semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 876–885.
Kingma, D. and Ba, J. (2014). Adam: A method for
stochastic optimization. International Conference on
Learning Representations.
Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu,
S., Barnes, L., and Brown, D. (2019). Text classifica-
tion algorithms: A survey. Information, 10(4):150.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing systems, pages 1097–1105.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Doll
´
ar, P., and Zitnick, C. L. (2014). Mi-
crosoft COCO: Common objects in context. In Euro-
pean Conference on Computer Vision, pages 740–755.
Springer.
Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V–
net: Fully convolutional neural networks for volumet-
ric medical image segmentation. In 2016 Fourth Inter-
national Conference on 3D Vision (3DV), pages 565–
571. IEEE.
Norberg, R. (1975). Hovering flight of the dragonfly
Aeschna Juncea l., kinematics and aerodynamics. In
Swimming and Flying in Nature, volume 2, pages
763–781.
Pereira, S., Pinto, A., Alves, V., and Silva, C. A. (2016).
Brain tumor segmentation using convolutional neural
networks in MRI images. IEEE Transactions on Med-
ical Imaging, 35(5):1240–1251.
Rossi, A., Barlacchi, G., Bianchini, M., and Lepri, B.
(2019). Modelling taxi drivers’ behaviour for the next
destination prediction. IEEE Transactions on Intelli-
gent Transportation Systems.
Rossum, G. (1995). Python reference manual. Technical re-
port, Amsterdam, The Netherlands, The Netherlands.
Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
4510–4520.
Shu, R., Bui, H., Narui, H., and Ermon, S. (2018). A DIRT–
T approach to unsupervised domain adaptation. In In-
ternational Conference on Learning Representations.
Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large–scale image recognition.
CoRR, abs/1409.1556.
Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L.
(2016). Breast cancer histopathological image classi-
fication using convolutional neural networks. In 2016
International Joint Conference on Neural Networks
(IJCNN), pages 2560–2567. IEEE.
Stern, U., He, R., and Yang, C.-H. (2015). Analyzing an-
imal behavior via classifying each video frame us-
ing convolutional neural networks. Scientific Reports,
5:14351.
Sturm, B., Santos, J., Ben-Tal, O., Korshunova, I., et al.
(2016). Music transcription modelling and composi-
tion using deep learning. arXiv:1604.08723.
Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to
sequence learning with neural networks. Advances in
NIPS.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception–v4, inception–resnet and the impact
of residual connections on learning. In Thirty–First
AAAI Conference on Artificial Intelligence.
Trnovszky, T., Kamencay, P., Orjeek, R., Benco, M., and
Sykora, P. (2017). Animal recognition system based
on convolutional neural network. Advances in Electri-
cal and Electronic Engineering, 15.
Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015).
Show and tell: A neural image caption generator. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3156–3164.
Wang, H., Zeng, L., Liu, H., and Yin, C. (2003). Measuring
wing kinematics, flight trajectory and body attitude
during forward flight and turning maneuvers in drag-
onflies. Journal of Experimental Biology, 206(4):745–
757.
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017).
Pyramid scene parsing network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2881–2890.
Deep Learning Techniques for Dragonfly Action Recognition
569