and Wikipedia knowledge), and (iii) integration of
additional task features including priorities as well as
budget and time constraints.
REFERENCES
Aggarwal, C. C. (2015). Data mining: the textbook.
Springer.
Alkhraisat, H. (2016). Issue Tracking System based on
Ontology and Semantic Similarity
Computation. International Journal of Advanced
Computer Science and Applications, 7(11), 248-251.
Arias, M., Saavedra, R., Marques, M. R., Munoz-Gama, J.,
& Sepúlveda, M. (2018). Human resource allocation in
business process management and process mining: A
systematic mapping study. Management
Decision, 56(2), 376-405.
Azzini, A., Galimberti, A., Marrara, S., & Ratti, E. (2018).
A classifier to identify soft skills in a researcher textual
description. In International Conference on the
Applications of Evolutionary Computation (pp. 538-
546). Springer, Cham.
Bassett, M. (2000). Assigning projects to optimize the
utilization of employees' time and expertise. Computers
& Chemical Engineering, 24(2-7), 1013-1021.
Burkard, R. E., Dell'Amico, M., & Martello, S.
(2009). Assignment problems. Philadelphia.
Cattrysse, D. G., & Van Wassenhove, L. N. (1992). A
survey of algorithms for the generalized assignment
problem. European journal of operational research,
60(3), 260-272.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint
arXiv:1810.04805.
Dunning, I., Huchette, J. and Lubin, M. (2017). Jump: A
modeling language for mathematical optimization.
SIAM Review, 59(2), pp. 295-320
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F.,
Giannotti, F., & Pedreschi, D. (2019). A survey of
methods for explaining black box models. ACM
computing surveys (CSUR), 51(5), 93.
Heyn, V., & Paschke, A. (2013). Semantic Jira-Semantic
Expert Finder in the Bug Tracking Tool Jira. arXiv
preprint arXiv:1312.5150.
Hill, J., Thomas, L. C., & Allen, D. E. (2000). Experts'
estimates of task durations in software development
projects. International journal of project management,
18(1), 13-21.
Hong-Bing, X., Hou-Jun, W., & Chun-Guang, L. (2002). A
hybrid algorithm for the assignment problem. In
Proceedings of the International Conference on
Machine Learning and Cybernetics (Vol. 2, pp. 881-
884). ACM.
Hopfield, J. J., & Tank, D. W. (1985). “Neural”
computation of decisions in optimization problems.
Biological cybernetics, 52(3), 141-152.
Kanakaris, N., Karacapilidis, N., & Lazanas, A. (2019). On
the Advancement of Project Management through a
Flexible Integration of Machine Learning and
Operations Research Tools. In Proceedings of the 8
th
International Conference on Operations Research and
Enterprise Systems. (pp. 362-369). SciTePress
Publications.
Kanakaris, N., Karacapilidis, N., Kournetas, G., & Lazanas,
A. (2020). Combining Machine Learning and
Operations Research Methods to Advance the Project
Management Practice. In International Conference on
Operations Research and Enterprise Systems (pp. 135-
155). Springer, Cham.
Karacapilidis, N., Malefaki, S., & Charissiadis, A. (2017).
A novel framework for augmenting the quality of
explanations in recommender systems. Intelligent
Decision Technologies, 11(2), (pp. 187-197).
Kelemenis, A., & Askounis, D. (2010). A new TOPSIS-
based multi-criteria approach to personnel selection.
Expert systems with applications, 37(7), 4999-5008.
Liu, Y., Zhao, S. L., Du, X. K., & Li, S. Q. (2005).
Optimization of resource allocation in construction
using genetic algorithms. In 2005 International
Conference on Machine Learning and Cybernetics
(Vol. 6, pp. 3428-3432). IEEE.
McDonald, D. W., & Ackerman, M. S. (2000). Expertise
recommender: a flexible recommendation system and
architecture. In Proceedings of the 2000 ACM
conference on Computer supported cooperative
work (pp. 231-240). ACM.
Mooney, R. J., & Roy, L. (2000). Content-based book
recommending using learning for text categorization. In
Proceedings of the fifth ACM conference on Digital
libraries (pp. 195-204). ACM.
Nikolentzos, G., Meladianos, P., Rousseau, F., Stavrakas,
Y., & Vazirgiannis, M. (2017). Shortest-path graph
kernels for document similarity. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing (pp. 1890-1900).
Rehurek, R., & Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks.
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why
should i trust you?: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining (pp. 1135-1144). ACM.
Singh, V. (2017). Replace or Retrieve Keywords In
Documents at Scale. arXiv preprint arXiv:1711.00046.
Sullivan, C. A., Zimmer, M. J., & Richards, R. F. (1988).
Employment Discrimination (pp. 266-n). Boston: Little,
Brown.
Wang, J. B., Wang, J., Wu, Y., Wang, J. Y., Zhu, H., Lin,
M., & Wang, J. (2018). A machine learning framework
for resource allocation assisted by cloud computing.
IEEE Network, 32(2), 144-151.
Wowczko, I. (2015). Skills and vacancy analysis with data
mining techniques. In Informatics (Vol. 2, No. 4, pp.
31-49). Multidisciplinary Digital Publishing Institute.