4 CONCLUSIONS
We present here a novel way of tuning the group
delay of a two-stage optical delay line by operating
the thermal heater at push-pull mode. The peak group
delay and resonant peak wavelength can be tuned
almost independently. The group delay is tuned by the
heater in one arm of the balanced MZI coupler to vary
the effective coupling coefficient to the resonator. On
the other hand, the thermal tuning on the racetrack
loop can correct the wavelength drift without
affecting the group delay. The simulation using the
practical device structure of a semiconductor foundry
is pursued to demonstrate the group-delay tuning
characteristics of such a racetrack-resonator.
The targeted applications for such tunable optical
delay lines are for optical sensing and/or bio-medical
sensing, where the light source usually has very
narrow linewidth. We demonstrate the tuning of
group delay to nearly 40 ps while fixing the resonant
wavelength by adjusting the heating power of Heater
3. The maximum group delay can be achieved by
tuning the coupling coefficient to have an even
sharper resonant peak with a tradeoff on the
transmission power. The tuning of hundreds of
picosecond is achievable with a very compact device
and very small power consumption. The use of two
cascaded identical stages with the described control
scheme allows to double both the tunability range of
the group delay compared to a single-stage ODL.
ACKNOWLEDGEMENTS
This research was supported by the Ministry of Science and
Technology, Taiwan, under Grant MOST 108-2622-E-011-
CC1.
REFERENCES
Melati, D., & Melloni, A. (2018). On-chip continuously
tunable optical delay line based on cascaded Mach-
Zehnder interferometer. In proceedings of the Optical
Fiber Communication Conference, OSA, San Diego,
California, USA.
Zhou, L., Wang, X., Lu, L., Chen, J., (2018). Integrated
optical delay lines. COL. Rev. 16, pp. 101301:1-
101301:16.
Melati, D., Waqas, A., Mushtaq, Z., & Melloni, A., (2018).
Wideband integrated optical delay line based on a
continuously tunable Mach-Zehnder interferometer.
IEEE J. Sel. Topics Quantum Electron. 24, pp.1-8.
Han, X., Wang, L., Zou, P., Wang, Y., Zhang, S., Gu, Y.,
Wang, J., Jian, X., & Zhao, M., (2013). A Tunable
Optical Waveguide Ring Resonator for Microwave
Photonic Filtering. In Proceedings of the IEEE
International Topical Meeting on MWP, Alexandria,
VA, USA, 28-31.
Cardenas, J., Foster, M. A., Sherwood-Droz, N., Poitras,
C.B., Lira, H L., Zhang, B., Gaeta, A. L., Khurgin, J.B.,
Morton, P., & Lipson, M., (2010). Wide-bandwidth
continuously tunable optical delay line using silicon
microring resonators. Opt. Express. 18, pp. 26525–
26534.
Zhuang, L., Hoekman, M., Beeker, W., Leinse, A.,
Heideman, R., van Dijk, P., & Roeloffzen, C., (2013).
Novel low-loss waveguide delay lines using Vernier
ring resonators for on-chip multi-λ microwave photonic
signal processors. Laser Photon. Rev. 7, pp. 994–1002.
Melloni, A., Canciamilla, A., Ferrari, C., Morichetti, F.,
O’Faolain, L., Krauss, T.F., de La Rue, R., Samarelli,
A., & Sorel, M., (2010) Tunable delay lines in silicon
photonics: Coupled resonators and photonic crystals, a
comparison. IEEE Photonics J. 2, pp. 181–194.
Liu, Y., Whichman, A. R., Isaac, B., Kalkavage, J., Adles,
E.J., Clark, T.R., & Klamkin, J., (2018). Ultra-low-loss
silicon nitride optical beamforming network for
wideband wireless applications. IEEE J. Sel. Topics
Quantum Electron. 24, pp. 1-10.
Balbas, E. M., Pandraud, G., & French, P. J., (2007)
Thermo-Optical Delay Line for Optical Coherence
Tomography. Proc. of SPIE 6717, pp. 671704:1-
671704:9
Pegios, M. M., Alexzndris, G. M.., Terzenidis, N., Cherchi,
M., Harjanne, M., Aalto, T., Miliou, A., Pleros, N., &
Vyrsokinos, K., (2018). On-Chip SOI Delay Line Bank
for Optical Buffers and Time Slot Interchangers. IEEE
Photonics Technology Letters. 30, pp. 31-34.
Park, H., Mack, J. P., Blumenthal, D. J., & Bowers, J. E.,
(2008). An integrated recirculating optical buffer. Opt.
Express. 16, pp. 11124-11131.
Capmany, J., & Novak, D., (2007). Microwave photonics
combines two worlds. Nature Photonics. 1, pp. 319–330.
Xia, F., Sekaric, L., & Vlasov, Y., (2007). Ultra compact
optical buffers on a silicon chip. Nature Photonics. 1,
pp. 65–71.
Hyeon, M. G., Kim, H. J., Kim, B. M., & Eom, T. J., (2015).
Spectral Domain Optical Coherence Tomography with
Balanced Detection Using Single Line-Scan Camera
and Optical Delay Line. Optics Express. 23, pp. 23079-
23091.
Bogaerts, W., De, H. P., van Vaerenbergh, T., De, V. K.,
Kumar, S. S., Claes, T., Dumon, P., Bienstman, P., van
Thourhout, D., & Baets, R., (2012). Silicon microring
resonators. Laser & amp Photonics Rev. 6, pp. 47–73.
Takahashi, H., Carlsson. P., Nishimura, K., & Usami, M.,
(2004). Analysis of Negative Group Delay Response of
All-Pass Ring Resonator with Mach-Zehnder
Interferometer IEEE Photonics Technology Letters. 16,
pp. 2063-2065.
Green, W. M., Lee, R. K., deRose, G. A., Scherer, A.,
Yariv, A., (2005). Hybrid InGaAsP-InP Mach-Zehnder
Racetrack Resonator for Thermo-Optic Switching and
Coupling Control. Optic Express. 13, pp. 1651-1659.