ACKNOWLEDGEMENTS
This work has been partially supported by H2020
EU-funded projects SPARTA, GA 830892 and EIT-
Digital Project HII, PRIN Governing Adaptive.
REFERENCES
Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman,
J. A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever,
C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sul-
livan, N., Thomas, K., and Zhou, Y. (2017). Under-
standing the mirai botnet. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1093–1110.
USENIX Association.
Buczak, A. L. and Guven, E. (2016). A survey of data min-
ing and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys
Tutorials.
da Silva, A. P. R., Martins, M. H., Rocha, B. P., Loureiro,
A. A., Ruiz, L. B., and Wong, H. C. (2005). Decentral-
ized intrusion detection in wireless sensor networks.
In Proceedings of the 1st ACM international workshop
on Quality of service & security in wireless and mo-
bile networks, pages 16–23. ACM.
Dasarathy, B. V. (1991). Nearest neighbor (nn) norms: Nn
pattern classification techniques. IEEE Computer So-
ciety Tutorial.
Draios. Sysdig: Linux system exploration and troubleshoot-
ing tool with first class support for containers.
Faiella, M., Martinelli, F., Mori, P., Saracino, A., and
Sheikhalishahi, M. (2016). Collaborative attribute re-
trieval in environment with faulty attribute managers.
In 11th International Conference on Availability, Re-
liability and Security, ARES 2016, Salzburg, Austria,
August 31 - September 2, 2016, pages 296–303.
Gupta, A., Pandey, O. J., Shukla, M., Dadhich, A., Mathur,
S., and Ingle, A. (2013). Computational intelligence
based intrusion detection systems for wireless com-
munication and pervasive computing networks. IEEE
International Conference on Computational Intelli-
gence and Computing Research, pages 1–7.
Haykin, S. (1994). Neural networks: a comprehensive foun-
dation. Prentice Hall PTR.
Ho, T. K. (1995). Random decision forests. In Proceedings
of 3rd international conference on document analysis
and recognition, volume 1, pages 278–282. IEEE.
Maymounkov, P. and Mazi
`
eres, D. (2002). Kademlia: A
peer-to-peer information system based on the xor met-
ric. IPTPS 2002: Peer-to-Peer Systems, 2429:53–65.
Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A.
(2018). Kitsune: An ensemble of autoencoders for
online network intrusion detection.
Mudgerikar, A., Sharma, P., and Bertino, E. (2019). E-
spion: A system-level intrusion detection system for
iot devices. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Secu-
rity, pages 493–500. ACM.
Oh, D., Kim, D., and Ro, W. (2014). A malicious pat-
tern detection engine for embedded securitysystems
in the internet of things. Sensors (Basel, Switzerland),
14:24188–24211.
Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.
Rish, I. et al. (2001). An empirical study of the naive bayes
classifier. In IJCAI 2001 workshop on empirical meth-
ods in artificial intelligence, volume 3, pages 41–46.
Scarfone, K. and Mell, P. (2012). Guide to intrusion detec-
tion and prevention systems (idps). Technical report,
National Institute of Standards and Technology.
Schapire and E., R. (2013). Explaining AdaBoost, pages
37–52. Springer Berlin Heidelberg.
Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Bal-
akrishnan, H. (2001). Chord: A scalable peer-to-peer
lookup service for internet applications. Conference
on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 149–160.
Suykens, J., Lukas, L., Van Dooren, P., De Moor, B., Van-
dewalle, J., et al. (1999). Least squares support vector
machine classifiers: a large scale algorithm. In Euro-
pean Conference on Circuit Theory and Design, EC-
CTD, volume 99, pages 839–842. Citeseer.
Wireshark. Wireshark - go deep.
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
712