REFERENCES
Arbib, C., Arcelli, D., Dugdale, J., Moghaddam, M. T., and
Muccini, H. (2019). Real-time Emergency Response
through Performant IoT Architectures. In Interna-
tional Conference on Information Systems for Crisis
Response and Management (ISCRAM).
Arcelli, D. and Cortellessa, V. (2013). Software model
refactoring based on performance analysis: better
working on software or performance side? In Buh-
nova, B., Happe, L., and Kofron, J., editors, FESCA,
volume 108 of EPTCS, pages 33–47.
Arcelli, D., Cortellessa, V., Filieri, A., and Leva, A. (2015).
Control theory for model-based performance-driven
software adaptation. In QoSA, pages 11–20. ACM.
Arcelli, D., Cortellessa, V., and Leva, A. (2016). A li-
brary of modeling components for adaptive queuing
networks. In EPEW, volume 9951 of LNCS, pages
204–219. Springer.
Barati, S., Bartha, F. A., Biswas, S., Cartwright, R., Duracz,
A., Fussell, D. S., Hoffmann, H., Imes, C., Miller,
J. E., Mishra, N., Arvind, Nguyen, D., Palem, K. V.,
Pei, Y., Pingali, K., Sai, R., Wright, A., Yang, Y.-H.,
and Zhang, S. (2019). Proteus: Language and runtime
support for self-adaptive software development. IEEE
Software, 36:73–82.
Becker, M., Becker, S., and Meyer, J. (2013). Simulizar:
Design-time modeling and performance analysis of
self-adaptive systems. In Kowalewski, S. and Rumpe,
B., editors, Software Engineering, volume 213 of LNI,
pages 71–84. GI.
Becker, M., Luckey, M., and Becker, S. (2012). Model-
driven performance engineering of self-adaptive sys-
tems: A survey. In QoSA, pages 117–122. ACM.
Bertoli, M., Casale, G., and Serazzi, G. (2018). Java Mod-
elling Tools – user manual. http://jmt.sourceforge.
net/Papers/JMT users Manual.pdf. [Online; accessed
20
th
January, 2020].
Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola,
R., and Tamburrelli, G. (2011). Dynamic qos man-
agement and optimization in service-based systems.
IEEE Trans. on Softw. Eng., 37(3):387–409.
C
´
amara, J., Garlan, D., Kang, W. G., Peng, W., and
Schmerl, B. R. (2017). Uncertainty in self-adaptive
systems categories, management, and perspectives.
Technical report, Institute for Software Research,
Carnegie Mellon University.
Elkhodary, A., Esfahani, N., and Malek, S. (2010). Fusion:
A framework for engineering self-tuning self-adaptive
software systems. In FSE, pages 7–16. ACM.
Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G.
(2009). Model evolution by run-time parameter adap-
tation. In ICSE, pages 111–121. IEEE Computer So-
ciety.
Grassi, V., Mirandola, R., and Randazzo, E. (2009). Model-
driven assessment of qos-aware self-adaptation. In
Cheng, B. H. C., de Lemos, R., Giese, H., Inver-
ardi, P., and Magee, J., editors, Software Engineering
for Self-Adaptive Systems, pages 201–222. Springer
Berlin Heidelberg.
Incerto, E., Tribastone, M., and Trubiani, C. (2017). Soft-
ware performance self-adaptation through efficient
model predictive control. In ASE, pages 485–496.
Jung, G., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D.,
and Pu, C. (2008). Generating adaptation policies for
multi-tier applications in consolidated server environ-
ments. In ICAC, pages 23–32.
Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing. Computer, 36(1):41–50.
Kounev, S., Brosig, F., Huber, N., and Reussner, R. (2010).
Towards self-aware performance and resource man-
agement in modern service-oriented systems. In
ICSC, pages 621–624.
Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik,
K. C. (1984). Quantitative system performance - com-
puter system analysis using queueing network models.
Prentice Hall.
Lung, C., Zhang, X., and Rajeswaran, P. (2016). Improving
software performance and reliability in a distributed
and concurrent environment with an architecture-
based self-adaptive framework. JSS, 121:311–328.
Morin, B., Barais, O., Nain, G., and Jezequel, J.-M. (2009).
Taming dynamically adaptive systems using models
and aspects. In ICSE, pages 122–132. IEEE Computer
Society.
Muccini, H. and Sharaf, M. (2017). Caps: Architecture de-
scription of situational aware cyber physical systems.
In Software Architecture (ICSA), 2017 IEEE Interna-
tional Conference on, pages 211–220. IEEE.
Musa, J. D. (1993). Operational profiles in software-
reliability engineering. IEEE Software, 10(2):14–32.
Perez-Palacin, D. and Mirandola, R. (2014). Uncertainties
in the modeling of self-adaptive systems: A taxonomy
and an example of availability evaluation. In ICPE,
pages 3–14. ACM.
Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Uni-
fied Modeling Language Reference Manual, The (2nd
Edition). Pearson Higher Education.
Selic, B. and Grard, S. (2013). Modeling and Analysis
of Real-Time and Embedded Systems with UML and
MARTE: Developing Cyber-Physical Systems. Mor-
gan Kaufmann Publishers Inc., 1st edition.
Shevtsov, S., Berekmeri, M., Weyns, D., and Maggio, M.
(2018). Control-theoretical software adaptation: A
systematic literature review. IEEE Trans. on Softw.
Eng., 44(8):784–810.
Weyns, D., Iftikhar, M. U., de la Iglesia, D. G., and Ahmad,
T. (2012). A survey of formal methods in self-adaptive
systems. In C3S2E, pages 67–79. ACM.
Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola,
R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H.,
and G
¨
oschka, K. M. (2013). On patterns for decentral-
ized control in self-adaptive systems. In Software En-
gineering for Self-Adaptive Systems II, volume 7475
of LNCS, pages 76–107. Springer, Berlin, Heidelberg.
Zhang, X., Lung, C., and Franks, G. (2010). Towards
architecture-based autonomic software performance
engineering. In Drira, K., editor, CAL, volume L-5 of
Revue des Nouvelles Technologies de l’Information,
pages 144–156. C
´
epadu
`
es-
´
Editions.
MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development
464