Jure
ˇ
cek, M. and L
´
orencz, R. (2018). Malware detection
using a heterogeneous distance function. Computing
and Informatics, 37(3):759–780.
Kephart, J. O. and Arnold, W. C. (1994). Automatic extrac-
tion of computer virus signatures. In 4th virus bulletin
international conference, pages 178–184.
Kong, D. and Yan, G. (2013). Discriminant malware dis-
tance learning on structural information for automated
malware classification. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1357–1365.
ACM.
Kulis, B. et al. (2013). Metric learning: A survey. Founda-
tions and Trends
R
in Machine Learning, 5(4):287–
364.
Luke, S. (2013). Essentials of Metaheuristics. Lulu, second
edition.
Microsoft (1999). Microsoft portable executable and com-
mon object file format specification.
Mitchell, T. M. (1997). Machine learning. New York.
Nath, H. V. and Mehtre, B. M. (2014). Static malware
analysis using machine learning methods. In Interna-
tional Conference on Security in Computer Networks
and Distributed Systems, pages 440–450. Springer.
Or-Meir, O., Nissim, N., Elovici, Y., and Rokach, L. (2019).
Dynamic malware analysis in the modern era—a state
of the art survey. ACM Computing Surveys (CSUR),
52(5):88.
Picard, R. R. and Cook, R. D. (1984). Cross-validation of
regression models. Journal of the American Statistical
Association, 79(387):575–583.
Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle
swarm optimization. Swarm intelligence, 1(1):33–57.
Quinlan, J. R. (1986). Induction of decision trees. Machine
learning, 1(1):81–106.
Robinson, J. and Rahmat-Samii, Y. (2004). Particle swarm
optimization in electromagnetics. IEEE transactions
on antennas and propagation, 52(2):397–407.
Saad, S., Briguglio, W., and Elmiligi, H. (2019). The cu-
rious case of machine learning in malware detection.
In Proceedings of the 5th International Conference on
Information Systems Security and Privacy - Volume 1:
ICISSP, pages 528–535. INSTICC, SciTePress.
Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2000).
Data mining methods for detection of new malicious
executables. In Proceedings 2001 IEEE Symposium
on Security and Privacy. S&P 2001, pages 38–49.
IEEE.
Shafiq, M. Z., Tabish, S. M., Mirza, F., and Farooq, M.
(2009). Pe-miner: Mining structural information to
detect malicious executables in realtime. In Interna-
tional Workshop on Recent Advances in Intrusion De-
tection, pages 121–141. Springer.
Shi, Y. and Eberhart, R. (1998). A modified particle
swarm optimizer. In 1998 IEEE international confer-
ence on evolutionary computation proceedings. IEEE
world congress on computational intelligence (Cat.
No. 98TH8360), pages 69–73. IEEE.
Stanfill, C. and Waltz, D. L. (1986). Toward memory-based
reasoning. Commun. ACM, 29(12):1213–1228.
VirusShare (2019). Virusshare.com.
Wang, D., Tan, D., and Liu, L. (2018). Particle swarm op-
timization algorithm: an overview. Soft Computing,
22(2):387–408.
Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2006). Dis-
tance metric learning for large margin nearest neigh-
bor classification. In Advances in neural information
processing systems, pages 1473–1480.
Wettschereck, D., Aha, D. W., and Mohri, T. (1997). A
review and empirical evaluation of feature weighting
methods for a class of lazy learning algorithms. Arti-
ficial Intelligence Review, 11(1-5):273–314.
Wilson, D. R. and Martinez, T. R. (1997). Improved het-
erogeneous distance functions. Journal of artificial
intelligence research, 6:1–34.
Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016).
Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann.
Xu, Y., Wu, C., Zheng, K., Wang, X., Niu, X., and Lu, T.
(2017). Computing adaptive feature weights with pso
to improve android malware detection. Security and
Communication Networks, 2017.
Yang, L. and Jin, R. (2006). Distance metric learning:
A comprehensive survey. Michigan State Universiy,
2(2):4.
Ye, Y., Li, T., Adjeroh, D., and Iyengar, S. S. (2017). A
survey on malware detection using data mining tech-
niques. ACM Computing Surveys (CSUR), 50(3):41.
Yu, J., Amores, J., Sebe, N., Radeva, P., and Tian, Q.
(2008). Distance learning for similarity estimation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(3):451–462.
Zhong, W. and Gu, F. (2019). A multi-level deep learning
system for malware detection. Expert Systems with
Applications, 133:151–162.
ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy
732