Curry, A. C., Papaioannou, I., Suglia, A., Agarwal, S., Sha-
lyminov, I., Xu, X., Du
ˇ
sek, O., Eshghi, A., Konstas,
I., Rieser, V., et al. (2018). Alana v2: Entertaining
and informative open-domain social dialogue using
ontologies and entity linking. Alexa Prize Proceed-
ings.
El Asri, L., He, J., and Suleman, K. (2016). A sequence-
to-sequence model for user simulation in spoken dia-
logue systems. Interspeech 2016, pages 1151–1155.
Eshghi, A., Shalyminov, I., and Lemon, O. (2017). Boot-
strapping incremental dialogue systems from minimal
data: the generalisation power of dialogue grammars.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2220–2230.
Ghigi, F. and Torres, M. I. (2015). Decision making strate-
gies for finite-state bi-automaton in dialog manage-
ment. In Natural Language Dialog Systems and In-
telligent Assistants, pages 209–221. Springer.
Griol, D., Hurtado, L. F., Segarra, E., and Sanchis, E.
(2008). A statistical approach to spoken dialog sys-
tems design and evaluation. Speech Communication,
50(8-9):666–682.
Henderson, M., Thomson, B., and Williams, J. (2013). Di-
alog state tracking challenge 2 & 3.
Henderson, M., Thomson, B., and Williams, J. D. (2014).
The second dialog state tracking challenge. In Pro-
ceedings of the 15th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue (SIGDIAL),
pages 263–272.
Higashinaka, R., Funakoshi, K., Inaba, M., Tsunomori, Y.,
Takahashi, T., and Kaji, N. (2017). Overview of dia-
logue breakdown detection challenge 3. Proceedings
of Dialog System Technology Challenge, 6.
Higashinaka, R., Funakoshi, K., Kobayashi, Y., and In-
aba, M. (2016). The dialogue breakdown detection
challenge: Task description, datasets, and evaluation
metrics. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3146–3150.
Hinton, G. E. (1990). Connectionist learning procedures. In
Machine learning, pages 555–610. Elsevier.
Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F., and Deng, L.
(2018). Bbq-networks: Efficient exploration in deep
reinforcement learning for task-oriented dialogue sys-
tems. In Thirty-Second AAAI Conference on Artificial
Intelligence.
Lopes, J. (2017). How generic can dialogue breakdown de-
tection be? the kth entry to dbdc3. Proceedings of
Dialog System Technology Challenge, 6.
L
´
opez Zorrilla, A., De Velasco V
´
azquez, M., and Tor-
res Bara
˜
nano, M. I. (2019). A differentiable generative
adversarial network for open domain dialogue.
Milhorat, P., Lala, D., Inoue, K., Zhao, T., Ishida, M.,
Takanashi, K., Nakamura, S., and Kawahara, T.
(2019). A conversational dialogue manager for the
humanoid robot erica. In Advanced Social Interaction
with Agents, pages 119–131. Springer.
Montenegro, C., Lpez Zorrilla, A., Mikel Olaso, J., San-
tana, R., Justo, R., Lozano, J. A., and Torres, M. I.
(2019). A dialogue-act taxonomy for a virtual coach
designed to improve the life of elderly. Multimodal
Technologies and Interaction, 3(3):52.
Orozko, O. R. and Torres, M. I. (2015). Online learning
of stochastic bi-automaton to model dialogues. In
Iberian Conference on Pattern Recognition and Image
Analysis, pages 441–451. Springer.
Paek, T. and Pieraccini, R. (2008). Automating spoken
dialogue management design using machine learn-
ing: An industry perspective. Speech communication,
50(8-9):716–729.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Pietquin, O. and Dutoit, T. (2006). A probabilistic frame-
work for dialog simulation and optimal strategy learn-
ing. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 14(2):589–599.
Platt, J. C. (1999). Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In ADVANCES IN LARGE MARGIN CLAS-
SIFIERS, pages 61–74. MIT Press.
Raux, A., Langner, B., Bohus, D., Black, A. W., and Es-
kenazi, M. (2005). Let’s go public! taking a spoken
dialog system to the real world. In Ninth European
conference on speech communication and technology.
Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., and
Young, S. (2007a). Agenda-based user simulation for
bootstrapping a pomdp dialogue system. In Human
Language Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics; Companion Volume, Short Pa-
pers, pages 149–152. Association for Computational
Linguistics.
Schatzmann, J., Thomson, B., and Young, S. (2007b). Sta-
tistical user simulation with a hidden agenda. Proc
SIGDial, Antwerp, 273282(9).
Schatzmann, J., Weilhammer, K., Stuttle, M., and Young,
S. (2006). A survey of statistical user simulation tech-
niques for reinforcement-learning of dialogue man-
agement strategies. The knowledge engineering re-
view, 21(2):97–126.
Scheffler, K. and Young, S. (2000). Probabilistic simulation
of human-machine dialogues. In 2000 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No. 00CH37100), vol-
ume 2, pages II1217–II1220. IEEE.
Sch
¨
utze, H., Manning, C. D., and Raghavan, P. (2008). In-
troduction to information retrieval. In Proceedings
of the international communication of association for
computing machinery conference, page 260.
Serras, M., Perez, N., Torres, M. I., and Del Pozo, A.
(2017a). Entropy-driven dialog for topic classifica-
tion: detecting and tackling uncertainty. In Dialogues
with Social Robots, pages 171–182. Springer.
Improving Dialogue Smoothing with A-priori State Pruning
613