Bertino, E. and Islam, N. (2017). Botnets and internet of
things security. Computer, (2):76–79.
Bezerra, V. H., da Costa, V. G. T., Martins, R. A., Ju-
nior, S. B., Miani, R. S., and Zarpelao, B. B. (2018a).
Data set. http://www.uel.br/grupo-pesquisa/secmq/
dataset-iot-security.html.
Bezerra, V. H., da Costa, V. G. T., Martins, R. A., Junior,
S. B., Miani, R. S., and Zarpelao, B. B. (2018b). Pro-
viding iot host-based datasets for intrusion detection
research. In Anais do XVIII Simp
´
osio Brasileiro em
Seguranc¸a da Informac¸
˜
ao e de Sistemas Computa-
cionais, pages 15–28. SBC.
Bolzoni, D. (2009). Revisiting Anomaly-based Network In-
trusion Detection Systems. University of Twente, En-
schede, Netherlands.
Bosche, A., Crawford, D., Jackson, D., Schallehn,
M., and Schorling, C. (2018). Unlocking op-
portunities in the internet of things. Retrieved
from: https://www.bain.com/contentassets/
5aa3a678438846289af59f62e62a3456/bain brief
unlocking opportunities in the internet of things.
pdf.
Butun, I., Morgera, S. D., and Sankar, R. (2013). A sur-
vey of intrusion detection systems in wireless sensor
networks. IEEE communications surveys & tutorials,
16(1):266–282.
Crowdstrike (2019). Hybrid analysis. Retrieved from:
https://www.hybrid-analysis.com/.
Doffman, Z. (2019). Cyberattacks on iot de-
vices surge 300% in 2019, ‘measured in
billions’, report claims. Retrieved from:
https://www.forbes.com/sites/zakdoffman/2019/09/14/
dangerous-cyberattacks-on-iot-devices-up-300-in-
2019-now-rampant-report-claims/#574229995892.
Doshi, R., Apthorpe, N., and Feamster, N. (2018). Ma-
chine learning ddos detection for consumer internet of
things devices. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 29–35. IEEE.
Feily, M., Shahrestani, A., and Ramadass, S. (2009). A
survey of botnet and botnet detection. In 2009 Third
International Conference on Emerging Security Infor-
mation, Systems and Technologies, pages 268–273.
IEEE.
Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014).
An empirical comparison of botnet detection methods.
computers & security, 45:100–123.
Gifford, W. R., Goldberg, M. L., Tanimoto, P. M., Cel-
nicker, D. R., and Poplawski, M. E. (2012). Residen-
tial lighting end-use consumption study: Estimation
framework and initial estimates. Retrieved from:
https://www1.eere.energy.gov/buildings/publications/
pdfs/ssl/2012 residential-lighting-study.pdf.
Hachem, N., Mustapha, Y. B., Granadillo, G. G., and Debar,
H. (2011). Botnets: lifecycle and taxonomy. In 2011
Conference on Network and Information Systems Se-
curity, pages 1–8. IEEE.
Hilton, S. (2016). Dyn analysis summary of friday octo-
ber 21 attack. Retrieved from: https://dyn.com/blog/
dyn-analysis-summary-of-friday-october-21-attack/.
Kang, H., Ahn, D. H., Lee, G. M., Yoo, J. D., Park, K. H.,
and Kim, H. K. (2019). Iot network intrusion dataset.
http://dx.doi.org/10.21227/q70p-q449.
Kirubavathi, G. and Anitha, R. (2014). Botnets: A study
and analysis. In Computational Intelligence, Cyber
Security and Computational Models, pages 203–214.
Springer.
Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J.
(2017). Ddos in the iot: Mirai and other botnets. Com-
puter, 50(7):80–84.
Koroniotis, N., Moustafa, N., Sitnikova, E., and Turnbull,
B. (2019). Towards the development of realistic botnet
dataset in the internet of things for network forensic
analytics: Bot-iot dataset. Future Generation Com-
puter Systems, 100:779–796.
Krebs, B. (2016). Krebsonsecurity hit with record ddos.
Retrieved from: https://krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/.
Kroustek, J., Iliushin, V., Shirokova, A., Neduchal, J., and
Hron, M. (2018). Torii botnet - not another mi-
rai variant. Retrieved from: https://blog.avast.com/
new-torii-botnet-threat-research.
Lin, K.-C., Chen, S.-Y., and Hung, J. C. (2014). Botnet de-
tection using support vector machines with artificial
fish swarm algorithm. Journal of Applied Mathemat-
ics, 2014.
Liu, S. (2019). Global iot market size 2017-2025.
Retrieved from: https://www.statista.com/statistics/
976313/global-iot-market-size/.
Livadas, C., Walsh, R., Lapsley, D. E., and Strayer, W. T.
(2006). Using machine learning techniques to identify
botnet traffic. In LCN, pages 967–974. Citeseer.
Marzano, A., Alexander, D., Fonseca, O., Fazzion, E.,
Hoepers, C., Steding-Jessen, K., Chaves, M. H.,
Cunha,
´
I., Guedes, D., and Meira, W. (2018). The
evolution of bashlite and mirai iot botnets. In 2018
IEEE Symposium on Computers and Communications
(ISCC), pages 00813–00818. IEEE.
McDermott, C. D., Majdani, F., and Petrovski, A. V. (2018).
Botnet detection in the internet of things using deep
learning approaches. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
IEEE.
McKinsey (2017). What’s new with the inter-
net of things? Retrieved from: https:
//www.mckinsey.com/industries/semiconductors/
our-insights/whats-new-with-the-internet-of-things.
Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,
Breitenbacher, D., Shabtai, A., and Elovici, Y.
(2018a). detection
of iot botnet attacks n baiot data
set. http://archive.ics.uci.edu/ml/datasets/detection
of IoT botnet attacks N BaIoT.
Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Breit-
enbacher, D., Shabtai, A., and Elovici, Y. (2018b). N-
baiot—network-based detection of iot botnet attacks
using deep autoencoders. IEEE Pervasive Computing,
17(3):12–22.
Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A.
(2018). Kitsune: an ensemble of autoencoders for
online network intrusion detection. arXiv preprint
arXiv:1802.09089.
MedBIoT: Generation of an IoT Botnet Dataset in a Medium-sized IoT Network
217