REFERENCES
Anagnostopoulos, K. P. and Mamanis, G. (2010). A port-
folio optimization model with three objectives and
discrete variables. Computers & Operations Re-
search, 37:1285–1297.
Angelelli, E., Mansini, R., and Speranza, M. G. (2008). A
comparison of MAD and CVaR models with real fea-
tures. Journal of Banking & Finance, 32:1188–1197.
Aranha, C. and Iba, H. (2007). Modelling cost into a ge-
netic algorithm-based portfolio optimization system
by seeding and objective sharing. In Proc. IEEE
Congress on Evolutionary Computation, pages 196–
203, Singapore.
Ash, R. B. (2008). Basic Probability Theory. Dover, Down-
ers Grove.
Beasley, J. E. (1990). OR-Library: distributing test prob-
lems by electronic mail. Journal of the Operational
Research Society, 41(11):1069–1072.
Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha,
Y. M. (2000). Heuristics for cardinality constrained
portfolio optimization. Computers & Operations Re-
search, 25:1271–1302.
Horst, R. and Pardalos, P. M. (1995). Handbook of Global
Optimization. Kluwer Academic Publishers.
Kataoka, S. (1963). Stochastic programming model.
Econometrica, 31(1/2):181–196.
Konno, H. and Yamamoto, R. (2005). Integer program-
ming approaches in mean-risk models.
Computational
Management Science, 2(4):339–351.
Konno, H. and Yamazaki, H. (1995). Mean-absolute de-
viation portfolio optimization model and its applica-
tions to Tokyo stock market. Management Science,
37(5):519–531.
L
´
opez, C. P. (2014). MATLAB Optimization Techniques.
Springer.
Mansini, R., Ogryczak, W., and Speranza, M. G. (2014).
Twenty years of linear programming based on port-
folio optimization. European Journal of Operational
Research, 234:518–535.
Markowitz, H. (1952). Portfolio selection. The Journal of
Finance, 7(1):77–91.
McCormick, G. P. (1983). Nonlinear Programming. John
Wiley & Sons.
Mokhtar, M., Shuib, A., and Mohamad, D. (2014). Mathe-
matical programming models for portfolio optimiza-
tion problem: a review. International Journal of
Mathematical and Computational Sciences, 8(2):428–
435.
Obeidat, S., Shapiro, D., and Lemay, M. (2018). Adap-
tive portfolio assets allocation optimization with deep
learning. IARIA International Journal on Advances in
Intelligent Systems, 11(1&2):25–34.
Pang, X., Zhou, Y., Wang, P., Lin, W., and Chang, V.
(2018). Stock market prediction based on deep long
short term memory neural networks. In Proc. COM-
PLEXIS 2018, pages 102–108.
Ponsich, A., Jaimes, A. L., and Coello, C. A. C. (2013).
A survey on multiobjective evolutionary algorithms
for the solution of the portfolio optimization problem
and other finance and economics applications. IEEE
Trans. on Evolutionary Computation, 17(3):321–343.
Pr
´
ekopa, A. (1995). Stochastic Programming. Kluwer Aca-
demic Publishers.
Price, K., Storn, R. M., and Lampinen, J. A. (2005). Dif-
ferential Evolution: A Practical Approach to Global
Optimization. Springer.
Roy, A. D. (1952). Safty first and the holding of assets.
Econometrica, 20(3):431–449.
Rubio, F., Mestre, X., and Palomar, D. (2012). Performance
analysis and optimal selection of large minimum vari-
ance portfolios under estimation risk. IEEE Journal of
Selected Topics in Signal Processing, 6(4):337–350.
Ruppert, D. (2011). Statistics and Data Analysis for Finan-
cial Engineering. Springer.
Strumberger, I., Tuba, E., Bacanin, N., Beko, M., and Tuba,
M. (2018). Hybridized artificial bee colony algorithm
for constrained portfolio optimization problem. In
Proc. IEEE Congress on Evolutionary Computation,
pages 1–8, Rio de Janeiro, Brazil.
Tagawa, K. (2019). Group-based adaptive differential evo-
lution for chance constrained portfolio optimization
using bank deposit and bank loan. In Proc. IEEE
Congress on Evolutionary Computation
, pages 1557–
1563, Wellington, New Zealand.
Tagawa, K. (2020). Chance constrained portfolio opti-
mization using loan. In Proc. The 12th International
Conference on Information, Process, and Knowledge
Management, pages 1–6, Valencia, Spain.
Tamiz, M., Azmi, R. A., and Jones, D. F. (2013). On se-
lecting portfolio of international mutual funds using
goal programming with extended factors. European
Journal of Operation Research, 226:560–576.
COMPLEXIS 2020 - 5th International Conference on Complexity, Future Information Systems and Risk
24