Flow Recycling Large-Scale Social Survey Data, IEEE
Pervasive Computing, 10(4):27-35.
Nakamura, T., Sekimoto, Y., Usui, T. and Shibasaki, R.
(2013). Estimation of People Flow in an Urban Area
Using Particle Filter, Journal of JSCE (D3), 69(3): 227-
236.
Hidaka, K., Ohno, H. and Shiga, T. (2016). Generating
Intra-Urban Human Mobility and Activity Data by
Integrating Multiple Statistical Data, Journal of JSCE
(D3), 72(4):324-343.
Okajia, I., Tanaka, S., Terada, M., Ikeda, D., Nagata, T.
(2013) "Mobile Spatial Statistics" Supporting
Development of Society and Industry - Population
Estimation Technology Using Mobile Network
Statistical Data and Applications -, NTT Do-CoMo
Technical Journal, https://www.nttdocomo.co.jp/eng
lish/binary/pdf/corporate/technology/rd/technical_jour
nal/bn/vol14_3/vol14_3_004en.pdf [accessed Feb. 17,
2020]
Seike, T., Mimaki, H., Hara, Y., Odawara, T., et al. (2011).
Research on the Applicability of ''Mobile Spatial
Statistics'' for Enhanced Urban Planning, Journal of the
City Planning Institute of Japan, 46(3):451-456.
Osaragi, T. and Kudo, R. (2018). Enhancing the Use of
Population Statistics Derived from Mobile Phone Users
by Considering Building-Use Dependent Purpose of
Stay, 22nd Conference on Geo-Information Science
(AGILE 2019), Geospatial Technologies for Local and
Regional Development, Springer, Cham, 185-203.
Deville, P., Linard, C., Martin, S., Gilbert, M., et al. (2014).
Dynamic Population Mapping Using Mobile Phone
Data, Proceedings of the National Academy of Sciences
of the United States of America, 111(45), 15888-15893.
Ratti, C., Pulselli, R. M., Williams, S. and Frenchman, D.
(2006). Mobile Landscapes: Using Location Data from
Cell-Phones for Urban Analysis, Environment and
Planning B: Planning and Design, 33(5):727-748.
Arimura, M., Kamada, A. and Asada, T. (2016). Estimation
of Visitor's Number in Mesh by Building Use by
Integrated Micro Geo Data, Journal of JSCE (D3),
72(5), Infrastructure Planning Review, 33: I_515-
I_522.
Kamada, K. (2017). Toshikotsubunnya ni okeru
konzatutoukeideta no katsuyou ni tsuite, Meeting of
Ministry of Land, Infrastructure, Transport and
Tourism Kinki Regional Development Bureau, 19.
Ishii, R., Shingai, H., Sekiya, H., Ikeda, D., et al. (2017). A
Study about the Improvement Possibility of Person-
Trip Survey Technique with Mobile Spatial Dynamics,
Journal of JSCE, 55.
Matsubara, N. (2017). Grasping Dynamic Population by
"Mobile Spatial Statistics": From the Viewpoint of
Tourism Disaster and Stranded persons, Journal of
Information Processing and Management, 60(7):493-
501.
Calabrese, F., DiLorenzo, G., Liu, L. and Ratti, C. (2011).
Estimating Origin-Destination Flows Using
Opportunistically Collected Mobile Phone Location
Data from One Million Users in Boston Metropolitan
Area, IEEE Pervasive Computing, 10(4):36-44.
Iqbal, Md. S., Choudhury, C.F., Wang, P. and Gonza'lez,
M. C. (2014). Development of Origin-Destination
Matrices Using Mobile Phone Call Data: A Simulation
Based Approach, Transportation Research Part C:
Emwrging Technologies, 40:63-74.
Osaragi, T. and Hayasaka, R. (2019). Estimating
Spatiotemporal Distribution of Moving People by
Integrating Multiple Population Statistics, Journal of
Architecture and Planning (Transactions of AIJ),
84(762):1853-1862.
APPENDIX
Appendix A: Maximum Likelihood
Estimator for the Number of Static
Occupants
When the known numbers of people in grid-cell i
during time t are M
i
t
and M
i
t+Δt
and the known static
occupant fractions are
a
P
i
t
and
a
P
i
t+Δt
, then the number
of static occupants
a
n
i
t
(Eqs. (3)-(5)) can be calculated
using the static occupant fraction (Eqs. (6) and (7)) as
a method for maximizing the statistic V
i
by using the
maximum likelihood algorithm:
(A1)
Taking the logarithm of both sides, we obtain
(A2)
Then, from Stirling’s equation, we find
(A3)
Substituting this into Eqs. (4)-(7), we obtain the
following:
()
(
)
()
(
)
()
(
)
()
(
)
ab
a
a
c
a
ab
ac
tt
ii
tt
ii
t
t
i
i
t
tt
i
i
tt
ii
tt t
ii
nn
t
i
Mn
n
n
n
M
VCP P
CP P
+Δ
+Δ
=