in the cultural heritage domain. International Journal
of Multimedia Data Engineering Management Science,
2(4), 1-18.
Alharthi, H., Inkpen, D., & Szpakowicz, S. (2018). A
survey of book recommender systems. Journal of
Intelligent Information Systems, 51(1), 139-160.
Andjelkovic, I., Parra, D., & O’Donovan, J. (2019).
Moodplay: interactive music recommendation based on
artists’ mood similarity. International Journal of
Human-Computer Studies, 121, 142-159.
Archak, N., Ghose, A., & Ipeirotis, P. G. (2011). Deriving
the pricing power of product features by mining
consumer reviews. Management Science, 57(8).
Ardissono, L., Kuflik, T., & Petrelli, D. (2012).
Personalization in cultural heritage: the road travelled
and the one ahead. User modeling user-adapted
interaction, 22(1-2), 73-99.
Barragáns-Martínez, A. B., Costa-Montenegro, E.,
Burguillo, J. C., Rey-López, M., Mikic-Fonte, F. A., &
Peleteiro, A. (2010). A hybrid content-based and item-
based collaborative filtering approach to recommend
TV programs enhanced with singular value
decomposition. Information sciences, 180(22), 4290-
4311.
Bartolini, I., Moscato, V., Pensa, R. G., Penta, A.,
Picariello, A., Sansone, C., & Sapino, M. L. (2013).
Recommending multimedia objects in cultural heritage
applications. Paper presented at the International
Conference on Image Analysis and Processing.
Bartolini, I., Moscato, V., Pensa, R. G., Penta, A.,
Picariello, A., Sansone, C., & Sapino, M. L. (2016).
Recommending multimedia visiting paths in cultural
heritage applications. Multimedia tools applications,
75(7), 3813-3842.
Bauer, J., & Nanopoulos, A. (2014). Recommender systems
based on quantitative implicit customer feedback.
Decision Support Systems, 68, 77-88.
Bedi, P., & Agarwal, S. K. (2011). Managing security in
aspect oriented recommender system. Paper presented
at the 2011 International Conference on
Communication Systems and Network Technologies.
Bedi, P., & Vashisth, P. (2014). Empowering recommender
systems using trust and argumentation. Information
sciences, 279, 569-586.
Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C.,
& Nürnberger, A. (2013). Research paper
recommender system evaluation: a quantitative
literature survey. Paper presented at the Proceedings of
the International Workshop on Reproducibility and
Replication in Recommender Systems Evaluation.
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A.
(2013). Recommender systems survey. Knowledge-
Based Systems, 46, 109-132.
doi:10.1016/j.knosys.2013.03.012
Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent
tourism recommender systems: A survey. Expert
Systems with Applications, 41(16), 7370-7389.
Briguez, C. E., Budan, M. C., Deagustini, C. A.,
Maguitman, A. G., Capobianco, M., & Simari, G. R.
(2014). Argument-based mixed recommenders and
their application to movie suggestion. Expert Systems
with Applications, 41(14), 6467-6482.
Canada, S. (2011). Conceptual framework for culture
statistics 2011. In: Minister of Industry Ottawa, ON.
Carrer-Neto, W., Hernández-Alcaraz, M. L., Valencia-
García, R., & García-Sánchez, F. (2012). Social
knowledge-based recommender system. Application to
the movies domain. Expert Systems with Applications,
39(12), 10990-11000.
Champiri, Z. D., Shahamiri, S. R., & Salim, S. S. B. (2015).
A systematic review of scholar context-aware
recommender systems. Expert Systems with
Applications, 42(3), 1743-1758.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012).
Business intelligence and analytics: From big data to
big impact. MIS Quarterly, 36, 1165-1188.
Chianese, A., Marulli, F., Piccialli, F., & Valente, I. (2013).
A novel challenge into multimedia cultural heritage: an
integrated approach to support cultural information
enrichment. Paper presented at the 2013 International
Conference on Signal-Image Technology & Internet-
Based Systems.
Chianese, A., & Piccialli, F. (2016). A smart system to
manage the context evolution in the Cultural Heritage
domain. Computers Electrical Engineering, 55, 27-38.
Christensen, I. A., & Schiaffino, S. (2011). Entertainment
recommender systems for group of users. Expert
Systems with Applications, 38(11), 14127-14135.
Colombo-Mendoza, L. O., Valencia-García, R., Rodríguez-
González, A., Alor-Hernández, G., & Samper-Zapater,
J. J. (2015). RecomMetz: A context-aware knowledge-
based mobile recommender system for movie
showtimes. Expert Systems with Applications, 42(3),
1202-1222.
Cuomo, S., De Michele, P., Galletti, A., & Piccialli, F.
(2015). A cultural heritage case study of visitor
experiences shared on a social network. Paper
presented at the 2015 10th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC).
Dam, N. A. K., Le Dinh, T., & Menvielle, W. (2019).
Marketing Intelligence From Data Mining Perspective
– A Literature Review. International Journal of
Innovation, Management and Technology.
Dasgupta, A., Ghosh, A., Kumar, R., Olston, C., Pandey,
S., Tomkins, A., . . . Tomkins, A. (2007). The
discoverability of the web. Paper presented at the
Proceedings of the 16th international conference on
World Wide Web.
Deng, F., Ren, P., Qin, Z., Huang, G., & Qin, Z. (2018).
Leveraging Image Visual Features in Content-Based
Recommender System. Scientific Programming, 2018.
Deng, S., Wang, D., Li, X., & Xu, G. (2015). Exploring user
emotion in microblogs for music recommendation.
Expert Systems with Applications, 42(23), 9284-9293.
Eirinaki, M., Gao, J., Varlamis, I., & Tserpes, K. (2018).
Recommender systems for large-scale social networks:
A review of challenges and solutions. Future
Generation Computer Systems.