ACKNOWLEDGEMENTS
The work presented in this paper is partly funded by
the European Regional Development Fund (ERDF)
and the Free State of Saxony (S
¨
achsische Aufbaubank
- SAB).
REFERENCES
Amasyali, K. and El-Gohary, N. M. (2018). A review of
data-driven building energy consumption prediction
studies. Renewable and Sustainable Energy Reviews,
81:1192–1205.
Augenstein, C., Spangenberg, N., and Franczyk, B.
(2019). An architectural blueprint for a multi-purpose
anomaly detection on data streams. In Proceedings of
the 21st International Conference on Enterprise Infor-
mation Systems, pages 470–476. SCITEPRESS - Sci-
ence and Technology Publications.
Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B.
(2010). Moa: Massive online analysis. J. Mach.
Learn. Res., 11:1601–1604.
Fan, W. and Gordon, M. D. (2014). The power of social me-
dia analytics. Communications of the ACM, 57(6):74–
81.
Fortino, G., Giordano, A., Guerrieri, A., Spezzano, G., and
Vinci, A. (2015). A data analytics schema for activity
recognition in smart home environments. In Garc
´
ıa-
Chamizo, J. M., Fortino, G., and Ochoa, S. F., edi-
tors, Ubiquitous Computing and Ambient Intelligence.
Sensing, Processing, and Using Environmental Infor-
mation, volume 9454 of Lecture Notes in Computer
Science, pages 91–102. Springer International Pub-
lishing, Cham.
Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., En-
embreck, F., Pfharinger, B., Holmes, G., and Ab-
dessalem, T. (2017). Adaptive random forests for
evolving data stream classification. Machine Learn-
ing, 106(9-10):1469–1495.
Gonzalez-Vidal, A., Ramallo-Gonzalez, A. P., Terroso-
Saenz, F., and Skarmeta, A. (2017). Data driven
modeling for energy consumption prediction in smart
buildings. In Nie, J.-Y., Obradovic, Z., Suzumura, T.,
Ghosh, R., Nambiar, R., and Wang, C., editors, 2017
IEEE International Conference on Big Data, pages
4562–4569, Piscataway, NJ. IEEE.
Hasan, T., Kikiras, P., Leonardi, A., Ziekow, H., and
Daubert, J. (2015). Cloud-based iot analytics for
the smart grid: Experiences from a 3-year pilot. In
Michelson, D. G., Garcia, A. L., Zhang, W.-B., Cap-
pos, J., and Darieby, M. E., editors, Proceedings of
the 10th International Conference on Testbeds and
Research Infrastructures for the Development of Net-
works & Communities (TRIDENTCOM).
Khan, M., Babar, M., Ahmed, S. H., Shah, S. C., and Han,
K. (2017). Smart city designing and planning based
on big data analytics. Sustainable Cities and Society,
35:271–279.
Lin, Y.-H. (2019). Novel smart home system architec-
ture facilitated with distributed and embedded flexible
edge analytics in demand–side management. Inter-
national Transactions on Electrical Energy Systems,
17(7):e12014.
Pham, L. M. (2016). A big data analytics framework for
iot applications in the cloud. VNU Journal of Science:
Computer Science and Communication Engineering,
31(2).
Popa, D., Pop, F., Serbanescu, C., and Castiglione, A.
(2019). Deep learning model for home automa-
tion and energy reduction in a smart home environ-
ment platform. Neural Computing and Applications,
31(5):1317–1337.
Strategy Analytics (2019). Internet of things now numbers
22 billion devices but where is the revenue? retrieved
from https://news.strategyanalytics.com/press-
release/iot-ecosystem/strategy-analytics-internet-
things-now-numbers-22-billion-devices-where.
Wehlitz, R., Zsch
¨
ornig, T., and Franczyk, B. (2019). A pro-
posal for an integrated smart home service platform.
In Proceedings of the 21st International Conference
on Enterprise Information Systems, pages 630–636.
SCITEPRESS - Science and Technology Publications.
Yassine, A., Singh, S., Hossain, M. S., and Muhammad, G.
(2019). Iot big data analytics for smart homes with fog
and cloud computing. Future Generation Computer
Systems, 91:563–573.
Zhong, R. Y., Xu, X., Klotz, E., and Newman, S. T. (2017).
Intelligent manufacturing in the context of industry
4.0: A review. Engineering, 3(5):616–630.
Zsch
¨
ornig, T., Wehlitz, R., and Franczyk, B. (2017). A
personal analytics platform for the internet of things:
Implementing kappa architecture with microservice-
based stream processing. In Proceedings of the 19th
International Conference on Enterprise Information
Systems, pages 733–738. SCITEPRESS - Science and
Technology Publications.
IoTBDS 2020 - 5th International Conference on Internet of Things, Big Data and Security
196