Ahlgren, M. 2019. 40+ Twitter Statistics & Facts For 2019
[Online]. Available: https://www.websitehosting
rating.com/twitter-statistics/ [Accessed 2019/11/30].
Ajao, O., Hong, J. & LIU, W. 2015. A survey of location
inference techniques on Twitter. Journal of Information
Science, 41, 855-864.
Allen, C., Tsou, M.-H., Aslam, A., Nagel, A. & GAWRON,
J.-M. 2016. Applying GIS and machine learning
methods to Twitter data for multiscale surveillance of
influenza. PloS one, 11, e0157734.
Australia, G. 2013. Gazetteer of Australia 2012 Release
[Online]. Available: https://ecat.ga.gov.au/geonetwork/
srv/eng/catalog.search#/metadata/76695 [Accessed
2019/12/2].
Backstrom, L., Sun, E. & Marlow, C. Find me if you can:
improving geographical prediction with social and
spatial proximity. Proceedings of the 19th international
conference on World wide web, 2010. ACM, 61-70.
Bouillot, F., Poncelet, P. & Roche, M. How and why exploit
tweet's location information? AGILE'2012: 15th
International Conference on Geographic Information
Science, 2012. N/A.
Chandra, S., Khan, L. & Muhaya, F. B. Estimating twitter
user location using social interactions--a content based
approach. 2011 IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Computing,
2011. IEEE, 838-843.
Cheng, Z., Caverlee, J. & Lee, K. 2013. A content-driven
framework for geolocating microblog users. ACM
Transactions on Intelligent Systems and Technology
(TIST), 4, 2.
Gao, Y., Wang, S., Padmanabhan, A., Yin, J. & Cao, G.
2018. Mapping spatiotemporal patterns of events using
social media: a case study of influenza trends.
International Journal of Geographical Information
Science, 32, 425-449.
Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S.,
Kazakopoulos, P. & Ratti, C. 2014. Geo-located
Twitter as proxy for global mobility patterns.
Cartography and Geographic Information Science, 41,
260-271.
Hecht, B., Hong, L., Suh, B. & Chi, E. H. Tweets from
Justin Bieber's heart: the dynamics of the location field
in user profiles. Proceedings of the SIGCHI conference
on human factors in computing systems, 2011. ACM,
237-246.
Huang, C., Tong, H., He, J. & Maciejewski, R. 2019.
Location Prediction for Tweets. Front. Big Data 2: 5.
doi: 10.3389/fdata.
Ikawa, Y., Vukovic, M., Rogstadius, J. & Murakami, A.
Location-based insights from the social web.
Proceedings of the 22nd international conference on
World Wide Web, 2013. ACM, 1013-1016.
Laylavi, F., Rajabifard, A. & Kalantari, M. 2016. A multi-
element approach to location inference of twitter: A
case for emergency response. ISPRS International
Journal of Geo-Information, 5, 56.
Li, R., Wang, S., Deng, H., Wang, R. & Chang, K. C.-C.
Towards social user profiling: unified and
discriminative influence model for inferring home
locations.
Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2012. ACM, 1023-1031.
Lin, Y. 2019. 10 Twitter Statistics Every Marketer Should
Know in 2019 [Infographic] [Online]. Available:
https://au.oberlo.com/blog/twitter-statistics [Accessed
2019/11/30].
Lingad, J., Karimi, S. & Yin, J. Location extraction from
disaster-related microblogs. Proceedings of the 22nd
international conference on world wide web, 2013.
ACM, 1017-1020.
Paul, M. J. & Dredze, M. You are what you tweet:
Analyzing twitter for public health. Fifth International
AAAI Conference on Weblogs and Social Media, 2011.
Priedhorsky, R., Culotta, A. & Del Valle, S. Y. Inferring the
origin locations of tweets with quantitative confidence.
Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing, 2014.
ACM, 1523-1536.
Prieto, V. M., Matos, S., Alvarez, M., Cacheda, F. &
Oliveira, J. L. 2014. Twitter: a good place to detect
health conditions. PloS one, 9, e86191.
Rosen, A. 2017. Tweeting Made Easier [Online].
Available: https://blog.twitter.com/official/en_us/
topics/product/2017/tweetingmadeeasier.html
[Accessed 2019/12/9].
Ryoo, K. & Moon, S. Inferring twitter user locations with
10 km accuracy. Proceedings of the 23rd International
Conference on World Wide Web, 2014. ACM, 643-648.
Signorini, A., Segre, A. M. & Polgreen, P. M. 2011. The
use of Twitter to track levels of disease activity and
public concern in the US during the influenza A H1N1
pandemic. PloS one, 6, e19467.
Singh, J. P., Dwivedi, Y. K., Rana, N. P., Kumar, A. &
Kapoor, K. K. 2017. Event classification and location
prediction from tweets during disasters. Annals of
Operations Research, 1-21.
Statistics, A. B. O. 2016. 1270.0.55.001 - Australian
Statistical Geography Standard (ASGS): Volume 1 -
Main Structure and Greater Capital City Statistical
Areas, July 2016 [Online]. Available: https://
www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1
270.0.55.001July%202016?OpenDocument [Accessed
2019/12/2].
Steiger, E., De Albuquerque, J. P. & Zipf, A. 2015. An
Advanced Systematic Literature Review on
Spatiotemporal Analyses of T witter Data. Transactions
in GIS, 19, 809-834.
Takhteyev, Y., Gruzd, A. & Wellman, B. 2012. Geography
of Twitter networks. Social networks, 34, 73-81.