Chong, W.-H., Lim, E.-P., and Cohen, W. (2017). Collec-
tive entity linking in tweets over space and time. In
European Conf. on Information Retrieval, pages 82–
94, Berlin, Heidelberg. Springer.
Fabian, M., Gjergji, K., and Gerhard, W. (2007). Yago:
A core of semantic knowledge unifying wordnet and
wikipedia. In 16th Intl. World Wide Web Conf., WWW,
pages 697–706.
Fang, W., Zhang, J., Wang, D., Chen, Z., and Li, M. (2016).
Entity disambiguation by knowledge and text jointly
embedding. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 260–269.
Fang, Y. and Chang, M.-W. (2014). Entity linking on mi-
croblogs with spatial and temporal signals. Transac-
tions of the Association for Computational Linguis-
tics, 2:259–272.
Ganea, O.-E., Ganea, M., Lucchi, A., Eickhoff, C., and
Hofmann, T. (2016). Probabilistic bag-of-hyperlinks
model for entity linking. In Proc. of the 25th Intl.
Conf. on World Wide Web, pages 927–938. Intl. World
Wide Web Conf. Steering Committee.
Ganea, O.-E. and Hofmann, T. (2017). Deep joint en-
tity disambiguation with local neural attention. arXiv
preprint arXiv:1704.04920.
Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills,
D., Eisenstein, J., Heilman, M., Yogatama, D., Flani-
gan, J., and Smith, N. A. (2010). Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. Technical report, Carnegie-Mellon Univ Pitts-
burgh Pa School of Computer Science.
Guo, Y., Qin, B., Liu, T., and Li, S. (2013). Microblog entity
linking by leveraging extra posts. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 863–868.
Guo, Z. and Barbosa, D. (2014). Entity linking with a uni-
fied semantic representation. In Proceedings of the
23rd International Conference on World Wide Web,
pages 1305–1310. ACM.
Han, H., Viriyothai, P., Lim, S., Lameter, D., and Mussell,
B. (2019). Yet another framework for tweet entity
linking (yaftel). In 2019 IEEE Conference on Multi-
media Information Processing and Retrieval (MIPR),
pages 258–263. IEEE.
Han, X., Sun, L., and Zhao, J. (2011). Collective entity
linking in web text: a graph-based method. In Proc.
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 765–774. ACM.
Hua, W., Zheng, K., and Zhou, X. (2015). Microblog entity
linking with social temporal context. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1761–1775. ACM.
Huang, H., Cao, Y., Huang, X., Ji, H., and Lin, C.-Y.
(2014). Collective tweet wikification based on semi-
supervised graph regularization. In ACL (1), pages
380–390.
Joulin, A., Grave, E., Bojanowski, P., Douze, M., J
´
egou,
H., and Mikolov, T. (2016). Fasttext.zip: Com-
pressing text classification models. arXiv preprint
arXiv:1612.03651.
Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2017a). Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431.
Association for Computational Linguistics.
Joulin, A., Grave, E., Bojanowski, P., Nickel, M., and
Mikolov, T. (2017b). Fast linear model for knowledge
graph embeddings. arXiv preprint arXiv:1710.10881.
Kalloubi, F., Nfaoui, E. H., et al. (2016). Microblog seman-
tic context retrieval system based on linked open data
and graph-based theory. Expert Systems with Applica-
tions, 53:138–148.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kolitsas, N., Ganea, O.-E., and Hofmann, T. (2018).
End-to-end neural entity linking. In Proceedings
of the 22nd Conference on Computational Natural
Language Learning, pages 519–529. Association for
Computational Linguistics.
Laender, A. H., Ribeiro-Neto, B. A., da Silva, A. S., and
Teixeira, J. S. (2002). A brief survey of web data ex-
traction tools. ACM Sigmod Record, 31(2):84–93.
Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., and Hellmann, S. (2009). DBpedia - a
crystallization point for the web of data. Journal of
Web Semantics, 7(3):154–165.
Li, Y., Tan, S., Sun, H., Han, J., Roth, D., and Yan, X.
(2016). Entity disambiguation with linkless knowl-
edge bases. In Proc. of the 25th Intl. Conf. on World
Wide Web, pages 1261–1270. Intl. World Wide Web
Conf. Steering Committee.
Li, Y. and Yang, T. (2018). Word embedding for under-
standing natural language: a survey. In Guide to Big
Data Applications, pages 83–104. Springer.
Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. (2015).
Learning entity and relation embeddings for knowl-
edge graph completion. In AAAI, volume 15, pages
2181–2187.
Liu, C., Li, F., Sun, X., and Han, H. (2019). Attention-based
joint entity linking with entity embedding. Informa-
tion, 10(2):46.
Martins, P. H., Marinho, Z., and Martins, A. F. (2019). Joint
learning of named entity recognition and entity link-
ing. arXiv preprint arXiv:1907.08243.
Moreno, J. G., Besanc¸on, R., Beaumont, R., D’hondt, E.,
Ligozat, A.-L., Rosset, S., Tannier, X., and Grau, B.
(2017). Combining word and entity embeddings for
entity linking. In European Semantic Web Conference,
pages 337–352. Springer.
Moro, A., Raganato, A., and Navigli, R. (2014). Entity
linking meets word sense disambiguation: a unified
approach. Transactions of the Association for Com-
putational Linguistics, 2:231–244.
Moussallem, D., Usbeck, R., R
¨
oeder, M., and Ngomo, A.-
C. N. (2017). Mag: A multilingual, knowledge-base
agnostic and deterministic entity linking approach. In
Proceedings of the Knowledge Capture Conference,
page 9. ACM.
OPTIC: A Deep Neural Network Approach for Entity Linking using Word and Knowledge Embeddings
325