light is launched to the dielectric channel waveguide
laid across the gap. There is no significant effect on the
output SPP mode when the TM polarized light is
launched to the dielectric channel waveguide. Only
when the TE polarized light is applied, lossy higher-
order SPP modes are excited in the output SPP mode
and the propagation loss increases remarkably
depending on the shape of the gold strips, which
suggests that modulating guided SPP mode is possible
using the excited higher-order SPP modes. These
phenomena can be applied to plasmonic signal
generator in which plasmonic signals are invertedly
generated from optical signals. Introducing metallic
structures such as a photonic crystal in the gap will
increase the modulation efficiency when plasmonic
signals are copied from optical signals in the G-
SPPWs.
ACKNOWLEDGEMENTS
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. NRF-2017R1A2B2009128).
REFERENCES
Koo, S.-R, Lee, D. H., Kim, G. and Lee, M.-H., 2019.
Phenomena of copied plasmonic signals from optical
signals. In Rochester conference on coherence and
quantum optics (CQO-11), Optical Society of America,
p. M5A-2.
Gramotnev, D.K. and Bozhevolnyi, S.I., 2010. Plasmonics
beyond the diffraction limit. Nature Photonics, 4, pp.83-
91.
Ozbay, E., 2006. Plasmonics: merging photonics and
electronics at nanoscale dimensions. Science, 311(5758),
pp.189-193.
Zia, R., Schuller, J.A., Chardran, A. and Brongersma, M.L.,
2006. Plasmonics: the next chip-scale technology.
Materials Today, 9(7-8), pp.20-27.
Maier, S.A., 2007. Plasmonics: fundamentals and
applications. Springer Science & Business Media.
Berini, P., 1999. Plasmon–polariton modes guided by a metal
film of finite width. Optics Letters, 24(15), pp.1011-
1013.
Lee, J.-M., Park, S., Kim, M.-S., Park, S.K., Kim, J.T., Choe,
J.-S., Lee, W.-J., Lee, M.-H. and Ju, J.J., 2009. Low
bending loss metal waveguide embedded in a free-
standing multilayered polymer film. Optics Express,
17(1), pp.228-234.
Gacemi, D., Mangeney, J., Colombelli, R. and Degiron, A.,
2013. Subwavelength metallic waveguides as a tool for
extreme confinement of THz surface waves. Scientific
Reports, 3, pp.1369.
Won, H.S., Kim, K.C., Song, S.H., Oh, C.H., Kim, P.S., Park,
S. and Kim, S.I., 2006. Vertical coupling of long-range
surface plasmon polaritons. Applied physics letters,
88(1), p.011110.
Park, H.-R., Park, J.-M., Kim, M.-S. and Lee, M.-H., 2012.
A waveguide-typed plasmonic mode converter. Optics
Express, 20(17), pp.18636-18645.
Cai, W., White, J.S. and Brongersma, M.L., 2009. Compact,
high-speed and power-efficient electrooptic plasmonic
modulators. Nano Letters, 9(12), pp.4403-4411.
Ayata, M., Fedoryshyn, Y., Heni, W., Baeuerle, B., Josten,
A., Zahner, M., Koch, U., Salamin, Y., Hoessbacher, C.,
Haffner, C. and Elder, D.L., 2017. High-speed plasmonic
modulator in a single metal layer. Science, 358(6363),
pp.630-632.
Dicken, M.J., Sweatlock, L.A., Pacifici, D., Lezec, H.J.,
Bhattacharya, K. and Atwater, H.A., 2008. Electrooptic
modulation in thin film barium titanate plasmonic
interferometers. Nano Letters, 8(11), pp.4048-4052.
Dionne, J.A., Diest, K., Sweatlock, L.A. and Atwater, H.A.,
2009. PlasMOStor: a metal-oxide-Si field effect
plasmonic modulator. Nano Letters, 9(2), pp.897-902.
Sidorenko, S. and Martin, O.J., 2007. Resonant tunneling of
surface plasmon-polaritons. Optics Express, 15(10),
pp.6380-6388.
Lee, D.H. and Lee, M.-H., 2015. Gapped surface plasmon
polariton waveguides for plasmonic signal modulation
applications. Journal of nanoscience and
nanotechnology, 15(10), pp.7679-7684.
Lee, D.H. and Lee, M.-H., 2019. Straight long-range surface
plasmon polariton waveguides with a gap. Journal of
nanoscience and nanotechnology, 19(10), pp.6106-6111.
Lee, D.H. and Lee, M.-H., 2016. Discontinuous tapered
surface plasmon polariton waveguides with gap. Journal
of nanoscience and nanotechnology, 16(6), pp.6275-
6280.
Lee, D.H. and Lee, M.-H., 2019. Efficient experimental
design of a long-range gapped surface plasmon polariton
waveguide for plasmonic modulation applications. IEEE
Photonics Journal, 11(1), pp.1-10.
Charbonneau, R., Scales, C., Breukelaar, I., Fafard, S.,
Lahoud, N., Mattiussi, G. and Berini, P., 2006. Passive
integrated optics elements based on long-range surface
plasmon polaritons. Journal of Lightwave Technology,
24(1), pp.477-494.
Berini, P., 2000. Plasmon-polariton waves guided by thin
lossy metal films of finite width: Bound modes of
symmetric structures. Physical Review B, 61(15),
pp.10484-10503.
Bliokh, K. Y. and Rodriguez-Fortuño, F. J., 2018. Electric-
current-induced unidirectional propagation of surface
plasmon-polaritons. Optics Letters, 43(5), pp.963-966.
Hu, B., Wang, Q. J. and Zhang. Y., 2012. Broadly tunable
one-way terahertz plasmonic waveguide based on
nonreciprocal surface magneto plasmons. Optics Letters,
37(11), pp.1895-1897.
Palik, E.D., 1985. Handbook of Optical Constants of Solids.
Orlando: Academic.
FDTD, Lumerical Inc. (https://www.lumerical.com).