camera and LIDAR systems. In 2014 Sixth
International Conference on Computational
Intelligence, Communication Systems and Networks
(pp. 186-191). IEEE.
Duda, R. O., & Hart, P. E. (1971). Use of the Hough
transformation to detect lines and curves in pictures
(No. SRI-TN-36). Sri International Menlo Park Ca
Artificial Intelligence Center.
Duthon, P., Colomb, M., & Bernardin, F. (2019). Light
transmission in fog: The influence of wavelength on the
extinction coefficient. Applied Sciences, 9(14), 2843.
Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2009,
May). Moving obstacle detection in highly dynamic
scenes. In 2009 IEEE International Conference on
Robotics and Automation (pp. 56-63). IEEE.
Filgueira, A., González-Jorge, H., Lagüela, S., Díaz-
Vilariño, L., & Arias, P. (2017). Quantifying the
influence of rain in LiDAR performance. Measurement,
95, 143-148.
Garg, K., & Nayar, S. K. (2005, October). When does a
camera see rain? In Tenth IEEE International
Conference on Computer Vision (ICCV'05) Volume 1
(Vol. 2, pp. 1067-1074). IEEE.
Goodin, C., Carruth, D., Doude, M., & Hudson, C. (2019).
Predicting the Influence of Rain on LIDAR in ADAS.
Electronics, 8(1), 89.
Griffith, E. J., Mishra, C., Ralph, J. F., & Maskell, S.
(2018). A system for the generation of synthetic Wide
Area Aerial surveillance imagery. Simulation
Modelling Practice and Theory, 84, 286-308.
Häne, C., Heng, L., Lee, G. H., Fraundorfer, F., Furgale, P.,
Sattler, T., & Pollefeys, M. (2017). 3D visual
perception for self-driving cars using a multi-camera
system: Calibration, mapping, localization, and
obstacle detection. Image and Vision Computing, 68,
14-27.
Hasirlioglu, S., Doric, I., Lauerer, C., & Brandmeier, T.
(2016, June). Modeling and simulation of rain for the
test of automotive sensor systems. In 2016 IEEE
Intelligent Vehicles Symposium (IV) (pp. 286-291).
IEEE.
Heinzler, R., Schindler, P., Seekircher, J., Ritter, W., &
Stork, W. (2019). Weather Influence and Classification
with Automotive Lidar Sensors. arXiv preprint
arXiv:1906.07675.
Kehrer, M., Pitz, J., Rothermel, T., & Reuss, H. C. (2018).
Framework for interactive testing and development of
highly automated driving functions. In 18.
Internationales Stuttgarter Symposium (pp. 659-669).
Springer Vieweg, Wiesbaden.
LGSVL Simulator (2019). LGSVL Simulator: An
Autonomous Vehicle Simulator [Online].
Miklić, D., Petrović, T., Čori
ć, M., Pišković, Z., & Bogdan,
S. (2012, May). A modular control system for
warehouse automation-algorithms and simulations in
USARSim. In 2012 IEEE International Conference on
Robotics and Automation (pp. 3449-3454). IEEE.
Nebuloni, R. (2005). Empirical relationships between
extinction coefficient and visibility in fog. Applied
optics, 44(18), 3795-3804.
Nyholm, S. (2018). The ethics of crashes with selfdriving
cars: A roadmap, II. Philosophy Compass, 13(7),
e12506.
Philip, A. S. (2013). Background subtraction algorithm for
moving object detection using denoising architecture in
FPGA. Int. J. Sci. Res, 2, 151-157.
Rasshofer, R. H., & Gresser, K. (2005). Automotive radar
and lidar systems for next generation driver assistance
functions. Advances in Radio Science, 3(B. 4), 205-209.
Rasshofer, R. H., Spies, M., & Spies, H. (2011). Influences
of weather phenomena on automotive laser radar
systems. Advances in Radio Science, 9(B. 2), 49-60.
RFpro. (2019). Driving Simulation | Deep Learning
Automated Driving | Vehicle Dynamics [Online].
Shimchik, I., Sagitov, A., Afanasyev, I., Matsuno, F., &
Magid, E. (2016). Golf cart prototype development and
navigation simulation using ROS and Gazebo. In
MATEC Web of Conferences (Vol. 75, p. 09005).
EDP Sciences.
Song, R., Wetherall, J., Maskell, S., & Ralph, J.F. (2019).
A Multi-Sensor Simulation Environment for
Autonomous Cars. In 2019 22nd International
Conference on Information Fusion (FUSION) (pp.).
IEEE.
Tideman, M., & Van Noort, M. (2013, June). A simulation
tool suite for developing connected vehicle systems. In
2013 IEEE Intelligent Vehicles Symposium (IV) (pp.
713-718). IEEE.
Velodyne Manual (2014). High Definition LiDAR - HDL
64E User Manual [Online].
VIRES (2019). VTD—virtual test drive [Online].
Xu, H., Gao, Y., Yu, F., & Darrell, T. (2017). End-to-end
learning of driving models from large-scale video
datasets. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 2174-
2182).