information during the first epochs showing itself as
the most reliable but only for a limited time.
PEGASIS, being an improvement version of the
LEACH, shows a performance better of this last,
while, paradoxically, the simulations identify in the
AODV protocol, conceived for mobile networks, a
valid competitor of the PEGASIS. This result can be
due both to the particular scenario and to the energy
requests of the other routing protocols.
REFERENCES
Shi, E., & Perrig, A. (2004). Designing Secure Sensor
Networks. IEEE Wireless Communications, 11 (6), 38-
43. DOI:10.1109/MWC.2004.1368895
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. & Cayirci,
E. (2002). Wireless sensor networks: a survey.
Computer Networks, 38 (4), 393-422.
DOI:10.1016/S1389-1286(01)00302-4.
Leccese, F., Cagnetti, M., Ferrone, A., Pecora, A. & Maiolo
L. (2014). An infrared sensor Tx/Rx electronic card for
aerospace applications. Proceedings of the IEEE
International Workshop on Metrology for Aerospace,
6865948, 353-357.
DOI:10.1109/MetroAeroSpace.2014.6865948.
Leccese, F., Cagnetti, M., Sciuto, S., Scorza, A., Torokhtii,
K., Silva, E. (2017). Analysis, design, realization and
test of a sensor network for aerospace applications.
Proceedings of IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), 1-6.
DOI:10.1109/I2MTC.2017.7969946.
Iqbal, Z., Kim, K. & Lee H. N. (2017). A Cooperative
Wireless Sensor Network for Indoor Industrial
Monitoring. IEEE Transactions on Industrial
Informatics, 13(2), 482-491, April 2017.
DOI:10.1109/TII.2016.2613504.
Abruzzese, D. Angelaccio, M. Giuliano, R. Miccoli, L. &
Vari, A. (2009). Monitoring and vibration risk
assessment in cultural heritage via Wireless Sensors
Network. Proceedings of 2nd Conference on Human
System Interactions, 568-573.
DOI:10.1109/HSI.2009.5091040.
Ming, X., Yabo, D., Dongming, L., Ping, X. & Gang, L.
(2008). A Wireless Sensor System for Long-Term
Microclimate Monitoring in Wildland Cultural
Heritage Sites. Proceedings of IEEE International
Symposium on Parallel and Distributed Processing
with Applications, pp. 207-214.
DOI:10.1109/ISPA.2008.75.
D'Amato, F., Gamba, P. & Goldoni, E. (2012). Monitoring
heritage buildings and artworks with Wireless Sensor
Networks, Proceedings of IEEE Workshop on
Environmental Energy and Structural Monitoring
Systems (EESMS), 1-6.
DOI:10.1109/EESMS.2012.6348392.
Abruzzese, D., Angelaccio, M., Buttarazzi, B., Giuliano,
R., Miccoli, L. & Vari, A. (2009). Long life monitoring
of historical monuments via Wireless Sensors Network.
Proceedings of 6th International Symposium on
Wireless Communication Systems, 570-574. doi:
10.1109/ISWCS.2009.5285215.
Pasquali, V., Gualtieri, R., D’Alessandro, G., Granberg, M.,
Hazlerigg, D., Cagnetti, M. & Leccese, F. (2016).
Monitoring and analyzing of circadian and ultradian
locomotor activity based on Raspberry-Pi. Electronics
(Switzerland), 5 (3), art. no. 58, .
DOI:10.3390/electronics5030058.
Pasquali, V., D'Alessandro, G., Gualtieri, R. & Leccese, F.
(2017). A new data logger based on Raspberry-Pi for
Arctic Notostraca locomotion investigations.
Measurement: Journal of the International
Measurement Confederation, 110, 249-256.
DOI:10.1016/j.measurement.2017.07.004.
Al-Karaki, J. N. & Kamal, A. E. (2004). Routing techniques
in wireless sensor networks: a survey. IEEE Wireless
Communications, 11 (6), 6-28.
DOI:10.1109/MWC.2004.1368893.
Leccese, F., Cagnetti, M., Tuti, S., Gabriele, P., De
Francesco, E., Ðurovi
ć-Pejčev, R. & Pecora, A. (2017).
Modified LEACH for Necropolis Scenario.
Proceedings of the IMEKO International Conference
on Metrology for Archaeology and Cultural Heritage,
23-25 October, 2017, Lecce, Italy.
Lamonaca, F., Sciammarella, P. F., Scuro, C., Carni, D. L.
& Olivito, R.S. (2018). Internet of Things for Structural
Health Monitoring. Proceeding of the Workshop on
Metrology for Industry 4.0 and IoT, MetroInd 4.0 and
IoT 2018, 95-100.
DOI:10.1109/METROI4.2018.8439038.
Gallucci, L., Menna, C., Angrisani, L., Asprone, D., Lo
Moriello, R.S., Bonavolontá, F. & Fabbrocino, F.
(2017). An embedded wireless sensor network with
wireless power transmission capability for the
structural health monitoring of reinforced concrete
structures. Sensors (Switzerland), 17 (11), 2566, .
DOI:10.3390/s17112566.
Morello, R., De Capua, C. & Meduri, A. (2010). Remote
monitoring of building structural integrity by a smart
wireless sensor network. Proceeding of the IEEE
International Instrumentation and Measurement
Technology Conference, I2MTC 2010, 1150-1154.
DOI:10.1109/IMTC.2010.5488136.
D’Alvia, L., Palermo, E., Rossi, S. & Del Prete, Z. (2017)
Validation of a low-cost wireless sensors node for
museum environmental monitoring. ACTA IMEKO, 6
(3), 45. DOI:
http://dx.doi.org/10.21014/acta_imeko.v6i3.454.
Islam, K., Shen, W. & Wang X. (2012). Wireless Sensor
Network Reliability and Security in Factory
Automation: A Survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and
Reviews), 42 (6), 1243-1256.
DOI:10.1109/TSMCC.2012.2205680.
Shen, C. C., Srisathapornphat, C. & Jaikaeo C. (2001).
Sensor information networking architecture and
applications. IEEE Personal Communications, 8 (4),
52-59. DOI:10.1109/98.944004.