responsive transport systems. IET intelligent transport
systems, 5(3), 159-167.
Deflorio, F. P., Dalla Chiara, B., & Murro, A. (2002).
Simulation and performance of DRTS in a realistic
environment. In Proceedings of the 13th Mini-Euro
Conference on Handling uncertainty in the analysis of
Traffic and Transportation systems and the 9th Meeting
of the Euro Working Group on Transportation
Intermodality, Sustainability and Intelligent transport
systems (pp. 622-628).
HSL (2016). Kutsuplus – Final Report. Helsinki Regional
Transport Authority. https://hsl.fi/sites/default/files/
uploads/8_2016_kutsuplus_finalreport_english.pdf
Hyytiä, E., Häme, L., Penttinen, A., & Sulonen, R. (2010).
Simulation of a large scale dynamic pickup and delivery
problem. In Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques (p.
77).
Johnston, R. A. (2004). The Urban Transportation Planning
Process. In Hanson, S. & Giuliano G. (Eds.), The
Geography of Urban Transportation (3
rd
ed., pp. 115–
140). The Guilford Press.
Jokinen, J. P., Sihvola, T., Hyytiä, E., & Sulonen, R. (2011).
Why urban mass demand responsive transport?. In
2011 IEEE Forum on Integrated and Sustainable
Transportation Systems (pp. 317-322).
Ke, J., Zheng, H., Yang, H., & Chen, X. M. (2017). Short-
term forecasting of passenger demand under on-
demand ride services: A spatio-temporal deep learning
approach. Transportation Research Part C: Emerging
Technologies, 85, 591-608.
Mageean, J., & Nelson, J. D. (2003). The evaluation of
demand responsive transport services in Europe.
Journal of Transport Geography, 11(4), 255-270.
McFadden, D. (1973). Conditional Logit Analysis of
Qualitative Choice Be. Frontiers in Econometrics, 105-
142.
Müller, K., & Axhausen, K. W. (2010). Population
synthesis for microsimulation: State of the art.
Arbeitsberichte Verkehrs- und Raumplanung, 638.
Mulley, C., Nelson, J., Teal, R., Wright, S., & Daniels, R.
(2012). Barriers to implementing flexible transport
services: An international comparison of the
experiences in Australia, Europe and USA. Research in
Transportation Business & Management, 3, 3–11.
Nam, D., Kim, H., Cho, J., & Jayakrishnan, R. (2017). A
model based on deep learning for predicting travel
mode choice. In Proceedings of the Transportation
Research Board 96th Annual Meeting Transportation
Research Board, Washington, DC, USA (pp. 8-12).
Papanikolaou, A., Basbas, S., Mintsis, G., & Taxiltaris, C.
(2017). A methodological framework for assessing the
success of Demand Responsive Transport services.
Transportation Research Procedia, 24, 393–400.
Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A
survey on pickup and delivery problems. Journal für
Betriebswirtschaft, 58(1), 21-51.
Patriksson, M. (2015). The Traffic Assignment Problem:
Models and Methods. Courier Dover Publications.
Pettersson, F. (2019). An international review of
experiences from on-demand public transport services.
K2 working papers 2019:5. http://lup.lub.lu.se/record/
e9e0079b-609f-4da9-a075-2a292d5aff03
Quadrifoglio, L., Dessouky, M. M., & Ordóñez, F. (2008).
A simulation study of demand responsive transit system
design. Transportation Research Part A: Policy and
Practice, 42(4), 718-737.
Renoux, J., & Klugl, F. (2018). Simulating daily activities
in a smart home for data generation. In Proceedings of
the 2018 Winter Simulation Conference (pp. 798-809).
IEEE.
Rieser, M., Nagel, K., Beuck, U., Balmer, M., &
Rümenapp, J. (2007). Agent-oriented coupling of
activity-based demand generation with multiagent
traffic simulation. Transportation Research Record,
2021(1), 10-17.
RVU (2018). Resvaneundersökning i Skåne 2018.
https://utveckling.skane.se/publikationer/rapporter-
analyser-och-prognoser/resvaneundersokning-i-skane/
Sharmeen, F., & Meurs, H. (2018). The Governance of
Demand-Responsive Transit Systems – A Multi-level
Perspective. In: The Governance of Smart
Transportation Systems (pp. 207-227). Springer, Cham.
Velaga, N. R., Beecroft, M., Nelson, J. D., Corsar, D., &
Edwards, P. (2012). Transport poverty meets the digital
divide: accessibility and connectivity in rural
communities. Journal of Transport Geography, 21,
102–112.
Yu, S., Shang, C., Yu, Y., Zhang, S., & Yu, W. (2016).
Prediction of bus passenger trip flow based on artificial
neural network. Advances in Mechanical Engineering,
8(10).
Zhao, Y., & Kockelman, K. M. (2002). The propagation of
uncertainty through travel demand models: an
exploratory analysis. The Annals of regional science,
36(1), 145-163.