Fu, J., Liang, L., Zhou, X., & Zheng, J. (2017). A
Convolutional Neural Network for Clickbait Detection.
In 2017 4th International Conference on Information
Science and Control Engineering (ICISCE) (pp. 6–10).
Glenski, M., Ayton, E., Arendt, D., & Volkova, S. (2017).
Fishing for Clickbaits in Social Images and Texts with
Linguistically-Infused Neural Network Models. In
Clickbait Challenge 2017. Retrieved from http://arxiv.
org/abs/1710.06390
Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the
Knowledge in a Neural Network, 1–9. https://doi.org/
10.1063/1.4931082
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735
Hoffman, M. D., Blei, D. M., & Bach, F. (2010). Online
learning for Latent Dirichlet Allocation. In Advances in
Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing
Systems 2010, NIPS 2010.
Kim, J. H., Mantrach, A., Jaimes, A., & Oh, A. (2016). How
to Compete Online for News Audience, 1645–1654.
https://doi.org/10.1145/2939672.2939873
Kim, J., He, Y., & Park, H. (2014). Algorithms for
nonnegative matrix and tensor factorizations: A unified
view based on block coordinate descent framework.
Journal of Global Optimization, 58(2), 285–319.
https://doi.org/10.1007/s10898-013-0035-4
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for
stochastic optimization. In 3rd International Conf. on
Learning Representations, ICLR 2015 - Conference
Track Proceedings.
Kuiken, J., Schuth, A., Spitters, M., & Marx, M. (2017).
Effective Headlines of Newspaper Articles in a Digital
Environment. Digital Journalism, 5(10), 1300–1314.
https://doi.org/10.1080/21670811.2017.1279978
Le, Q., & Mikolov, T. (2014). Distributed representations
of sentences and documents. In Proceedings of the 31st
International Conference on International Conference
on Machine Learning - Volume 32 (pp. II–1188).
JMLR.org. Retrieved from https://dl.acm.org/cita
tion.cfm?id=3045025
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document
recognition. Proceedings of the IEEE. https://doi.org/
10.1109/5.726791
Lopyrev, K. (2015). Generating News Headlines with
Recurrent Neural Networks, 1–9. https://doi.org/10.
1023/A
Martin Potthast, Tim Gollub, Matthias Hagen, and B. S.
(2017). The Clickbait Challenge 2017: Towards a
Regression Model for Clickbait Strength. In
Proceddings of the Clickbait Chhallenge.
Omidvar, A., Jiang, H., & An, A. (2018). Using Neural
Network for Identifying Clickbaits in Online News
Media. In Annual International Symposium on
Information Management and Big Data (pp. 220–232).
Palau-Sampio, D. (2016). Reference press metamorphosis
in the digital context: clickbait and tabloid strategies in
elpais.com. Communication & Society, 29(2).
Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., & Cheng, X.
(2016). Text Matching as Image Recognition, 2793–
2799. https://doi.org/10.1007/s001700170197
Pennington, J., Socher, R., & Manning, C. D. (2014).
GloVe: Global vectors for word representation. In
EMNLP 2014 - 2014 Conference on Empirical Methods
in Natural Language Processing, Proceedings of the
Conference. https://doi.org/10.3115/v1/d14-1162
Reis, J., Benevenuto, F., de Melo, P. O. S. V., Prates, R.,
Kwak, H., & An, J. (2015). Breaking the News: First
Impressions Matter on Online News, 357–366.
Retrieved from http://arxiv.org/abs/1503.07921
Rony, M. M. U., Hassan, N., & Yousuf, M. (2017). Diving
deep into clickbaits: Who use them to what extents in
which topics with what effects? In Proceedings of the
2017 IEEE/ACM International Conf. on Advances in
Social Networks Analysis and Mining 2017 (pp.232–239)
Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., &
Manning, C. D. (2011). Dynamic pooling and unfolding
recursive autoencoders for paraphrase detection. In
Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information
Processing Systems 2011, NIPS 2011.
Stokowiec, W., Trzciński, T., Wołk, K., Marasek, K., &
Rokita, P. (2017). Shallow reading with deep learning:
Predicting popularity of online content using only its
title. In International Symposium on Methodologies for
Intelligent Systems (pp. 136–145).
Szymanski, T., Orellana-Rodriguez, C., & Keane, M. T.
(2017). Helping News Editors Write Better Headlines:
A Recommender to Improve the Keyword Contents &
Shareability of News Headlines. Retrieved from
http://arxiv.org/abs/1705.09656
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., … Polosukhin, I. (2017). Attention
is all you need. In Advances in neural information
processing systems (pp. 5998–6008).
Venneti, L., & Alam, A. (2018). How Curiosity can be
modeled for a Clickbait Detector. Retrieved from
http://arxiv.org/abs/1806.04212
Voronov, A., Shen, Y., & Mondal, P. K. (2019).
Forecasting popularity of news article by title analyzing
with BN-LSTM network. In ACM International
Conference Proceeding Series (pp. 19–27). Association
for Computing Machinery. https://doi.org/10.1145/333
5656.3335679
Wei, W., & Wan, X. (2017). Learning to identify
ambiguous and misleading news headlines. IJCAI
International Joint Conference on Artificial
Intelligence, 4172–4178.
Yin, W., Kann, K., Yu, M., & Schütze, H. (2017).
Comparative Study of CNN and RNN for Natural
Language Processing. Retrieved from http://arxiv.org/
abs/1702.01923
Zhou, Y. (2017). Clickbait Detection in Tweets Using Self-
attentive Network. In Clickbait Challenge 2017.
Retrieved from http://arxiv.org/abs/1710.05364