Fisher, D. K. and Kebede, H. (2010). A low-cost
microcontroller-based system to monitor crop temper-
ature and water status. Computers and Electronics in
Agriculture, 74(1):168–173.
Gardner, J. W. and Bartlett, P. N. (1994). A brief history of
electronic noses. Sensors and Actuators B: Chemical,
18(1-3):210–211.
Ge, Y., Thomasson, J. A., and Sui, R. (2011). Remote sens-
ing of soil properties in precision agriculture: A re-
view. Frontiers of Earth Science, 5(3):229–238.
Hightower, J. and Borriello, G. (2001). Location systems
for ubiquitous computing. Computer, (8):57–66.
Jawad, H. M., Nordin, R., Gharghan, S. K., Jawad, A. M.,
and Ismail, M. (2017). Energy-efficient wireless sen-
sor networks for precision agriculture: A review. Sen-
sors, 17(8):1781.
Jiber, Y., Harroud, H., and Karmouch, A. (2011). Pre-
cision agriculture monitoring framework based on
wsn. In 2011 7th International Wireless Communica-
tions and Mobile Computing Conference, pages 2015–
2020. IEEE.
Khater, M., de la Escosura-Mu
˜
niz, A., and Merkoc¸i, A.
(2017). Biosensors for plant pathogen detection.
Biosensors and Bioelectronics, 93:72–86.
Kunz, G. (2014). Chartist.js, an open-source library for re-
sponsive charts. Published on: Dec, 16.
Liaghat, S., Balasundram, S. K., et al. (2010). A review:
The role of remote sensing in precision agriculture.
American journal of agricultural and biological sci-
ences, 5(1):50–55.
Maiolo, L., Polese, D., Pecora, A., Fortunato, G., Shacham-
Diamand, Y., and Convertino, A. (2016). Highly dis-
ordered array of silicon nanowires: an effective and
scalable approach for performing and flexible electro-
chemical biosensors. Advanced healthcare materials,
5(5):575–583.
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scud-
eri, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti,
M., Goulart, L. R., et al. (2015). Advanced methods of
plant disease detection. a review. Agronomy for Sus-
tainable Development, 35(1):1–25.
Moriana, A., Orgaz, F., Pastor, M., and Fereres, E. (2003).
Yield responses of a mature olive orchard to water
deficits. Journal of the American Society for Horti-
cultural Science, 128(3):425–431.
Patil, K. and Kale, N. (2016). A model for smart agriculture
using iot. In 2016 International Conference on Global
Trends in Signal Processing, Information Computing
and Communication (ICGTSPICC), pages 543–545.
IEEE.
Polese, D., Mattoccia, A., Giorgi, F., Pazzini, L., Di Gi-
amberardino, L., Fortunato, G., and Medaglia, P.
(2017). A phenomenological investigation on chlorine
intercalated layered double hydroxides used as room
temperature gas sensors. Journal of Alloys and Com-
pounds, 692:915–922.
Polese, D., Mattoccia, A., Giorgi, F., Pazzini, L., Ferrone,
A., Di Giamberardino, L., Maiolo, L., Pecora, A.,
Convertino, A., Fortunato, G., et al. (2015). Layered
double hydroxides intercalated with chlorine used as
low temperature gas sensors. Procedia engineering,
120:1175–1178.
Rademacher, W. (2015). Plant growth regulators: back-
grounds and uses in plant production. Journal of plant
growth regulation, 34(4):845–872.
Sahu, K. and Mazumdar, S. G. (2012). Digitally green-
house monitoring and controlling of system based on
embedded system. International Journal of Scientific
& Engineering Research, 3(1):1–3.
Snipes, G. (2018). Google data studio. Journal of Librari-
anship and Scholarly Communication, 6(1).
Stipanicev, D. and Marasovic, J. (2003). Networked embed-
ded greenhouse monitoring and control. In Proceed-
ings of 2003 IEEE Conference on Control Applica-
tions, 2003. CCA 2003., volume 2, pages 1350–1355.
IEEE.
Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong,
L.-T., and Liu, J.-H. (2012). Metal Oxide Nanostruc-
tures and Their Gas Sensing Properties: A Review.
Sensors, 12(3):2610–2631.
Testi, L., Villalobos, F., Orgaz, F., and Fereres, E. (2006).
Water requirements of olive orchards: I simulation of
daily evapotranspiration for scenario analysis. Irriga-
tion Science, 24(2):69–76.
Uzun, S. (2007). Effect of light and temperature on the
phenology and maturation of the fruit of eggplant
(solanum melongena) grown in greenhouses. New
Zealand journal of crop and horticultural science,
35(1):51–59.
Yoo, S.-e., Kim, J.-e., Kim, T., Ahn, S., Sung, J., and Kim,
D. (2007). A 2 s: automated agriculture system based
on wsn. In 2007 IEEE International Symposium on
Consumer Electronics, pages 1–5. IEEE.
Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan,
L., Wu, K., and Huang, W. (2019). Monitoring plant
diseases and pests through remote sensing technology:
A review. Computers and Electronics in Agriculture,
165:104943.
Zhu, L. and Zeng, W. (2017). Room-temperature gas sens-
ing of zno-based gas sensor: A review. Sensors and
Actuators A: Physical, 267:242–261.
WSN4PA 2020 - Special Session on Wireless Sensor Networks for Precise Agriculture
186