Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., San-
tone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2016). Acquiring and analyzing app metrics for ef-
fective mobile malware detection. In Proceedings of
the 2016 ACM International Workshop on Interna-
tional Workshop on Security and Privacy Analytics.
ACM.
Ceccarelli, M., Cerulo, L., and Santone, A. (2014). De
novo reconstruction of gene regulatory networks from
time series data, an approach based on formal meth-
ods. Methods, 69(3):298–305.
Chakraborty, D. and Chattopadhyay, M. (2020). Assign-
ment tracking on android platform. In Information
and Communication Technology for Sustainable De-
velopment, pages 491–499. Springer.
Cimitile, A., Martinelli, F., Mercaldo, F., Nardone, V.,
and Santone, A. (2017). Formal methods meet mo-
bile code obfuscation identification of code reorder-
ing technique. In 2017 IEEE 26th International Con-
ference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 263–268.
IEEE.
Cimitile, A., Mercaldo, F., Nardone, V., Santone, A., and
Visaggio, C. A. (2018). Talos: no more ransomware
victims with formal methods. International Journal of
Information Security, 17(6):719–738.
Clarke, E. M., Grumberg, O., and Peled, D. A. (2001).
Model checking. MIT Press.
Cleaveland, R. and Sims, S. (1996). The NCSU concur-
rency workbench. In Computer Aided Verification, 8th
International Conference, CAV ’96, New Brunswick,
NJ, USA, July 31 - August 3, 1996, Proceedings, pages
394–397.
Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-
G., Cox, L. P., Jung, J., McDaniel, P., and Sheth,
A. N. (2014). Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems
(TOCS), 32(2):5.
Enck, W., Ongtang, M., and McDaniel, P. (2008). Mitigat-
ing android software misuse before it happens.
Fasano, F., Martinelli, F., Mercaldo, F., Nardone, V., and
Santone, A. (2019a). Spyware detection using tem-
poral logic. In 5th International Conference on Infor-
mation Systems Security and Privacy, ICISSP 2019,
pages 690–699. SciTePress.
Fasano, F., Martinelli, F., Mercaldo, F., and Santone, A.
(2019b). Energy consumption metrics for mobile de-
vice dynamic malware detection. Procedia Computer
Science, 159:1045–1052.
Fasano, F., Martinelli, F., Mercaldo, F., and Santone, A.
(2019c). Investigating mobile applications quality in
official and third-party marketplaces. In Proceed-
ings of the 14th International Conference on Evalu-
ation of Novel Approaches to Software Engineering,
pages 169–178. SCITEPRESS-Science and Technol-
ogy Publications, Lda.
Felt, A. P., Greenwood, K., and Wagner, D. (2010). The
effectiveness of install-time permission systems for
third-party applications. University of California at
Berkely, Electrical Engineering and Computer Sci-
ences, Technical report.
Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., and
Wagner, D. (2012). Android permissions: User atten-
tion, comprehension, and behavior. In Proceedings of
the eighth symposium on usable privacy and security,
page 3. ACM.
Foster, J. (2020). Who decides what is allowed? user inter-
actions and permissions use on android. ACM SIGAda
Ada Letters, 39(1):71–71.
Francesco, N. d., Lettieri, G., Santone, A., and Vaglini, G.
(2014). Grease: a tool for efficient “nonequivalence”
checking. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 23(3):24.
Gradara, S., Santone, A., and Villani, M. L. (2005). Using
heuristic search for finding deadlocks in concurrent
systems. Information and Computation, 202(2):191–
226.
Huang, C.-Y., Tsai, Y.-T., and Hsu, C.-H. (2013). Perfor-
mance evaluation on permission-based detection for
android malware. In Advances in Intelligent Systems
and Applications-Volume 2, pages 111–120. Springer.
Jeon, J., Micinski, K. K., Vaughan, J. A., Reddy, N., Zhu,
Y., Foster, J. S., and Millstein, T. (2011). Dr. android
and mr. hide: Fine-grained security policies on un-
modified android. Technical report.
Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh,
N., and Wetherall, D. (2012). A conundrum of per-
missions: installing applications on an android smart-
phone. In International conference on financial cryp-
tography and data security, pages 68–79. Springer.
Martinelli, F., Marulli, F., and Mercaldo, F. (2017a). Eval-
uating convolutional neural network for effective mo-
bile malware detection. Procedia computer science,
112:2372–2381.
Martinelli, F., Mercaldo, F., Nardone, V., Santone, A., San-
gaiah, A. K., and Cimitile, A. (2018). Evaluating
model checking for cyber threats code obfuscation
identification. Journal of Parallel and Distributed
Computing, 119:203–218.
Martinelli, F., Mercaldo, F., and Saracino, A. (2017b).
Bridemaid: An hybrid tool for accurate detection of
android malware. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications
Security, pages 899–901. ACM.
Mercaldo, F., Nardone, V., and Santone, A. (2016a). Ran-
somware inside out. In Availability, Reliability and
Security (ARES), 2016 11th International Conference
on, pages 628–637. IEEE.
Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016b). Download malware? no, thanks: how formal
methods can block update attacks. In Proceedings of
the 4th FME Workshop on Formal Methods in Soft-
ware Engineering, FormaliSE@ICSE 2016, Austin,
Texas, USA, May 15, 2016, pages 22–28. ACM.
Mercaldo, F., Nardone, V., Santone, A., and Visaggio,
C. A. (2016c). Ransomware steals your phone. for-
Android Run-time Permission Exploitation User Awareness by Means of Formal Methods
813