REFERENCES
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-
Fei, L., and Savarese, S. (2016). Social lstm: Human
trajectory prediction in crowded spaces. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 961–971.
Appert-Rolland, C., Pettré, J., Olivier, A.-H., Warren, W.,
Duigou-Majumdar, A., Pinsard, É., and Nicolas, A.
(2018). Experimental study of collective pedestrian
dynamics. arXiv preprint arXiv:1809.06817.
Chao, Q., Jin, X., Huang, H.-W., Foong, S., Yu, L.-F., and
Yeung, S.-K. (2019). Force-based heterogeneous traf-
fic simulation for autonomous vehicle testing. In 2019
International Conference on Robotics and Automation
(ICRA), pages 8298–8304. IEEE.
Cosgun, A., Sisbot, E. A., and Christensen, H. I. (2016).
Anticipatory robot path planning in human environ-
ments. In 2016 25th IEEE International Sympo-
sium on Robot and Human Interactive Communica-
tion (RO-MAN), pages 562–569. IEEE.
Di
¯
einait-Rauktien, R., Val
¯
eiukien, J., Parsova, V., and
Maliene, V. (2018). The importance of environmen-
tal criteria for kaunas city pedestrian zones. Opportu-
nities and Constraints of Land Management in Local
and Regional Development: Integrated Knowledge,
Factors and Trade-offs, page 133.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Confer-
ence on Robot Learning, pages 1–16.
Fiorini, P. and Shiller, Z. (1998). Motion planning in dy-
namic environments using velocity obstacles. The In-
ternational Journal of Robotics Research, 17(7):760–
772.
Helbing, D., Farkas, I., and Vicsek, T. (2000). Simu-
lating dynamical features of escape panic. Nature,
407(6803):487.
Helbing, D. and Molnar, P. (1995). Social force model for
pedestrian dynamics. Physical review E, 51(5):4282.
Jan, Q. H., Klein, S., and Berns, K. (2020). Safe and effi-
cient navigation of an autonomous shuttle in a pedes-
trian zone. In Berns, K. and Görges, D., editors, Ad-
vances in Service and Industrial Robotics, pages 267–
274, Cham. Springer International Publishing.
Karamouzas, I., Heil, P., van Beek, P., and Overmars, M. H.
(2009). A predictive collision avoidance model for
pedestrian simulation. In Egges, A., Geraerts, R., and
Overmars, M., editors, Motion in Games, pages 41–
52, Berlin, Heidelberg. Springer Berlin Heidelberg.
Kimura, T., Sano, T., Hayashida, K., Takeichi, N.,
Minegishi, Y., Yoshida, Y., and Watanabe, H. (2019).
Representing crowds using a multi-agent model–
development of the simtread pedestrian simulation
system. Japan Architectural Review, 2(1):101–110.
Martin, R. F. and Parisi, D. R. (2019). Data-driven simula-
tion of pedestrian collision avoidance with a nonpara-
metric neural network. Neurocomputing.
Moussaïd, M., Helbing, D., and Theraulaz, G. (2011). How
simple rules determine pedestrian behavior and crowd
disasters. Proceedings of the National Academy of
Sciences, 108(17):6884–6888.
Rasouli, A. and Tsotsos, J. K. (2019). Autonomous vehi-
cles that interact with pedestrians: A survey of theory
and practice. IEEE Transactions on Intelligent Trans-
portation Systems.
van den Berg, J., Guy, S. J., Lin, M., and Manocha, D.
(2011). Reciprocal n-body collision avoidance. In
Pradalier, C., Siegwart, R., and Hirzinger, G., editors,
Robotics Research, pages 3–19, Berlin, Heidelberg.
Springer Berlin Heidelberg.
Yang, D., Li, L., Redmill, K., and Özgüner, Ü. (2019).
Top-view trajectories: A pedestrian dataset of vehicle-
crowd interaction from controlled experiments and
crowded campus. arXiv preprint arXiv:1902.00487.
Yin, Z., Liu, J., and Wang, L. (2019). Less-effort colli-
sion avoidance in virtual pedestrian simulation. In
Proceedings of the 2019 International Conference on
Artificial Intelligence and Computer Science, AICS
2019, pages 488–493, New York, NY, USA. ACM.
VEHITS 2020 - 6th International Conference on Vehicle Technology and Intelligent Transport Systems
584