and the MOSAIC Research Center
7
at the University
of Molise.
REFERENCES
Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
(2014). Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android
apps. ACM SIGPLAN Notices, 49(6):259–269.
Barbuti, R., De Francesco, N., Santone, A., and Vaglini, G.
(2005). Reduced models for efficient ccs verification.
Formal Methods in System Design, 26(3):319–350.
Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., San-
tone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering.
Ceccarelli, M., Cerulo, L., and Santone, A. (2014). De
novo reconstruction of gene regulatory networks from
time series data, an approach based on formal meth-
ods. Methods, 69(3):298–305. cited By 10.
Chen, S., Xue, M., Tang, Z., Xu, L., and Zhu, H.
(2016). Stormdroid: A streaminglized machine
learning-based system for detecting android malware.
In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages
377–388. ACM.
Ciobanu, M. G., Fasano, F., Martinelli, F., Mercaldo, F.,
and Santone, A. (2019a). A data life cycle modeling
proposal by means of formal methods. In Proceedings
of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 670–672.
Ciobanu, M. G., Fasano, F., Martinelli, F., Mercaldo,
F., and Santone, A. (2019b). Model checking for
data anomaly detection. Procedia Computer Science,
159:1277–1286.
Clarke, E. M., Grumberg, O., and Peled, D. (2001). Model
checking. MIT Press.
Cleaveland, R. and Sims, S. (1996). The ncsu concurrency
workbench. In Alur, R. and Henzinger, T. A., editors,
CAV, volume 1102 of Lecture Notes in Computer Sci-
ence, pages 394–397. Springer.
Dalton, M., Kannan, H., and Kozyrakis, C. (2010). Taint-
ing is not pointless. ACM SIGOPS Operating Systems
Review, 44(2):88–92.
Duc, N. V. and Giang, P. T. (2018). Nadm: Neural network
for android detection malware. In Proceedings of the
Ninth International Symposium on Information and
Communication Technology, pages 449–455. ACM.
Fasano, F., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). Cascade learning for mobile malware fami-
lies detection through quality and android metrics. In
International Joint Conference on Neural Networks,
IJCNN 2019 Budapest, Hungary, July 14-19, 2019,
pages 1–10.
7
https://dipbioter.unimol.it/ricerca/laboratori/centro-di-
ricerca-mosaic/
Gradara, S., Santone, A., and Villani, M. L. (2005). Using
heuristic search for finding deadlocks in concurrent
systems. Information and Computation, 202(2):191–
226.
Harleen K. Flora, Xiaofeng Wang, S. C. (2014). Adopting
an agile approach for the development of mobile ap-
plications. Journal of Computer Applications, 94:43–
50.
Kim, J., Kim, T., and Im, E. G. (2014). Survey of dynamic
taint analysis. In 2014 4th IEEE International Confer-
ence on Network Infrastructure and Digital Content,
pages 269–272.
Li, W., Yan, Y., Tu, H., and Xu, J. (2014). A dynamic taint
tracking based method to detect sensitive information
leaking. In The 16th Asia-Pacific Network Operations
and Management Symposium, pages 1–4.
Martinelli, F., Marulli, F., and Mercaldo, F. (2017a). Eval-
uating convolutional neural network for effective mo-
bile malware detection. Procedia computer science,
112:2372–2381.
Martinelli, F., Mercaldo, F., and Saracino, A. (2017b).
Bridemaid: An hybrid tool for accurate detection of
android malware. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications
Security, pages 899–901. ACM.
Milner, R. (1989). Communication and concurrency. PHI
Series in computer science. Prentice Hall.
Santone, A. (2002). Automatic verification of concur-
rent systems using a formula-based compositional ap-
proach. Acta Informatica, 38(8):531–564.
Santone, A. (2011). Clone detection through process alge-
bras and java bytecode. In IWSC, pages 73–74. Cite-
seer.
Scanniello, G., Fasano, F., Lucia, A. D., and Tortora, G.
(2013). Does software error/defect identification mat-
ter in the italian industry? IET Software, 7(2).
Shan, Z., Neamtiu, I., and Samuel, R. (2018). Self-hiding
behavior in android apps: detection and characteriza-
tion. In Proceedings of the 40th International Confer-
ence on Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, pages 728–
739.
Stirling, C. (1989). An introduction to modal and temporal
logics for ccs. In Yonezawa, A. and Ito, T., editors,
Concurrency: Theory, Language, And Architecture,
volume 491 of LNCS, pages 2–20. Springer.
Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Gi-
acinto, G., and Cavallaro, L. (2017). Droidsieve: Fast
and accurate classification of obfuscated android mal-
ware. In Proceedings of the Seventh ACM on Confer-
ence on Data and Application Security and Privacy,
pages 309–320. ACM.
Yang, Z. and Yang, M. (2012). Leakminer: Detect informa-
tion leakage on android with static taint analysis. In
2012 Third World Congress on Software Engineering,
pages 101–104. IEEE.
ForSE 2020 - 4th International Workshop on FORmal methods for Security Engineering
834