4 CONCLUSIONS
This study allowed to conclude that the adsorption of
a GO layer on PEI/GO LbL films follows the general
two stages adsorption processes found
polyelectrolytes. The first adsorption stage takes
place within the first seconds, the adsorption is
dominated by the adsorption of molecules which are
bound to the last layer of polyelectrolyte by ionic
interactions. At a given adsorption time these
adsorbed molecules somehow prevent more
molecules to be adsorbed and for larger adsorption
times, the presence of counterions and diffusion
process enable that more GO molecules to be
adsorbed. As a results these last molecules are not so
strongly bound to the last polyelectrolyte layer and
can be removed more easily by desorption. Therefore
the layers with smaller adsorption times are more
stable than for higher adsorption times. This study
also revealed that these films are more stable at higher
pHs allowing choose the adequate solutions for
sensor applications where these LbL films are stable.
ACKNOWLEDGEMENTS
The authors acknowledge the financial support from
FEDER, through Programa Operacional Factores de
Competitividade COMPETE and Fundação to
Fundação para a Ciência e Tecnologia, Portugal,
through projects “Development of Nanostrutures for
Detection of Triclosan Traces on Aquatic
Environments” (PTDC/FIS-NAN/0909/2014) and
the UID/FIS/00068/2019. PM Zagalo acknowledges
to Fundação para a Ciência e a Tecnologia for his PhD
fellowship (PD/BD/142768/2018) from RABBIT
Doctoral Programme.
REFERENCES
Costa, H.F.C. 2018. Desenvolvimento de dispositivos
sensores de fibras ópticas revestidas de filmes finos de
óxido de grafeno, Master Degree Thesis, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa,
Portugal.
Ferreira, Q., Ribeiro, P.A., Raposo, M. 2013.Villain's
fractal growth of poly[1-[4-(3-carboxy-4-
hydroxyphenylazo) benzenesulfonamido]-1,2-
ethanediyl, sodium salt] J-aggregates onto layer-by-
layer films and its effect on film absorbance spectrum
Journal of Applied Physics, 113, 243508.
Liu, S.; Yang, K.; Wang, Y.; Qu, J.; Liao, C.; He, J.; Li, Z.;
Yin, G.; Sun, B.; Zhou, J.; Wang, G.; Tang, J.; Zhao, J.
2015. High-sensitivity strain sensor based on in-fiber
rectangular air bubble. Sci. Rep., 5, 7624.
Magro, C., 2019. Advances in applied electrokinetics:
Treatment, by-productics reuse and sensors´system,
PhD Thesis, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Portugal.
Magro, C., Mateus, E., Raposo,M., Ribeiro, A. B, 2019
Overview of electronic tongue sensing in
environmental aqueous matrices: Potential for
monitoring emerging organic contaminants”,
Environmental Reviews, 27(2),202-214
Magro, C., Zagalo, P.M., Pereira-da-Silva, J., Mateus, E.P.,
Ribeiro, A.B., Ribeiro, P.A., Raposo, M. 2019b.
Triclosan detection in aqueous environmental matrices
by thin-films sensors: impedantiometric electronic
tongue. Proceedings 2019, 15, 24, 2019, https://doi.org/
10.3390/proceedings2019015024 .
Marques, I., Magalhães-Mota, G., Pires, F., Sério, S.,
Ribeiro, P.A., Raposo, M. 2017. Detection of Traces of
Triclosan in Water”, Applied Surface Science, 421,
142–147.
Monteiro, C. S., Raposo,M., Ribeiro, P.A., Silva, S.,
Frazão, O. 2019. Graphene oxide as a tunable platform
for microsphere-based optical fiber sensors, Proc. SPIE
11207, Fourth International Conference on
Applications of Optics and Photonics, 112070X;
https://doi.org/10.1117/12.2527267.
Monteiro, C.; Silva, S.; Frazao, O. 2017. Hollow
Microsphere Fabry–Perot Cavity for Sensing
Applications. IEEE Photonics Technol. Lett. 29, 1229–
1232
Novais, S., Ferreira, M. S., Pinto, J. L. 2017. Lateral Load
Sensing with an Optical Fiber Inline Microcavity. IEEE
Photonics Technol. Lett., 29, 1502–1505.
Oliveira, O.N., Raposo, M., Dhanabalan, A., 2001. In
Langmuir-Blodgett (LB) and Self-assembled (SA)
polymeric films, in: Nalwa, H.S.B.T.-H. of S. and I. of
M. (Ed.), Handbook of Surfaces and Interfaces of
Materials. Academic Press, Burlington, pp. 1–63.
Raposo, M., Pontes, R. S., Mattoso L. H. C., Oliveira Jr., O.
N. 1997. Kinetics of Adsorption of Poly (o-
methoxyaniline) Self-assembled films,
Macromolecules, 30, 6095-6101.
Silverstein, R. M., Bassler, G. C. & Morrill, T. C.
1991.Spectrometric Identification of Organic
Compounds.
Xu, M. G., Dakin, J. P. 1993. Novel hollow-glass
microsphere sensor for monitoring high hydrostatic
pressure. In Fiber Optic and Laser Sensors X, Vol.
1795, pp. 2–7.
Zagalo, P.M., Magro, C., Pereira-da-Silva, J., Bouchikhi,
B., el Bari, N., Ribeiro, P.A., Raposo, M. (2019).
Detection of Triclosan in tuned solutions by pH and
ionic strength using PAH/PAZO thin films.
Proceedings 2019, 15, 25, https://doi.org/10.3390/
proceedings2019015025 .