Conf. on Multiagent System Technologies, pages 28–
39. Springer.
Calvaresi, D., Mualla, Y., Najjar, A., Galland, S., and
Schumacher, M. (2019). Explainable multi-agent sys-
tems through blockchain technology. In Proc. of
1st Int. Workshop on eXplanable TRansparent Au-
tonomous Agents and Multi-Agent Systems (EXTRAA-
MAS 2019).
Collier, N. (2003). Repast: An extensible framework for
agent simulation. The University of Chicago’s Social
Science Research, 36:2003.
Gunning, D. (2017). Explainable artificial intelligence
(xai). Defense Advanced Research Projects Agency
(DARPA), nd Web.
Harbers, M., van den Bosch, K., and Meyer, J.-J. (2010).
Design and evaluation of explainable bdi agents. In
2010 IEEE/WIC/ACM Int. Conf. on Web Intelligence
and Intelligent Agent Technology, volume 2, pages
125–132.
Harbers, M., van den Bosch, K., and Meyer, J.-J. C. (2009).
A study into preferred explanations of virtual agent
behavior. In Int. Workshop on Intelligent Virtual
Agents, pages 132–145. Springer.
Hastie, H., Liu, X., and Patron, P. (2017). Trust triggers
for multimodal command and control interfaces. In
Proc. of 19th ACM Int. Conf. on Multimodal Interac-
tion, pages 261–268. ACM.
Hellström, T. and Bensch, S. (2018). Understandable
robots-what, why, and how. Paladyn, Journal of Be-
havioral Robotics, 9(1):110–123.
Hoffman, R. R., Mueller, S. T., Klein, G., and Litman, J.
(2018). Metrics for explainable ai: Challenges and
prospects. arXiv preprint arXiv:1812.04608.
Kambayashi, Y., Yajima, H., Shyoji, T., Oikawa, R., and
Takimoto, M. (2019). Formation control of swarm
robots using mobile agents. Vietnam J. Com. Sci.,
6:193–222.
Keil, F. C. (2006). Explanation and understanding. Annu.
Rev. Psychol., 57:227–254.
Lorig, F., Dammenhayn, N., Müller, D.-J., and Timm,
I. J. (2015). Measuring and comparing scalability
of agent-based simulation frameworks. In German
Conf. on Multiagent System Technologies, pages 42–
60. Springer.
Mualla, Y., Bai, W., Galland, S., and Nicolle, C. (2018a).
Comparison of agent-based simulation frameworks
for unmanned aerial transportation applications. Pro-
cedia computer science, 130(C):791–796.
Mualla, Y., Najjar, A., Boissier, O., Galland, S., Haman,
I. T., and Vanet, R. (2019a). A cyber-physical sys-
tem for semi-autonomous oil&gas drilling operations.
In 2019 Third IEEE Int. Conf. on Robotic Computing
(IRC), pages 514–519. IEEE.
Mualla, Y., Najjar, A., Daoud, A., Galland, S., Nicolle, C.,
Yasar, A.-U.-H., and Shakshuki, E. (2019b). Agent-
based simulation of unmanned aerial vehicles in civil-
ian applications: A systematic literature review and
research directions. Future Generation Computer Sys-
tems, 100:344–364.
Mualla, Y., Najjar, A., Galland, S., Nicolle, C.,
Haman Tchappi, I., Yasar, A.-U.-H., and Främling,
K. (2019c). Between the megalopolis and the deep
blue sky: Challenges of transport with UAVs in future
smart cities. In Proc. of 18th Int. Conf. on Autonomous
Agents and MultiAgent Systems, pages 1649–1653.
Mualla, Y., Najjar, A., Kampik, T., Tchappi, I., Galland, S.,
and Nicolle, C. (2019d). Towards explainability for
a civilian uav fleet management using an agent-based
approach. arXiv preprint arXiv:1909.10090.
Mualla, Y., Vanet, R., Najjar, A., Boissier, O., and Galland,
S. (2018b). Agentoil: a multiagent-based simulation
of the drilling process in oilfields. In Int. Conf. on
Practical Applications of Agents and Multi-Agent Sys-
tems, pages 339–343. Springer.
Najjar, A., Mualla, Y., Boissier, O., and Picard, G. (2017).
Aquaman: Qoe-driven cost-aware mechanism for saas
acceptability rate adaptation. In Int. Conf. on Web In-
telligence, pages 331–339. ACM.
Omiya, M., Takimoto, M., and Kambayashi, Y. (2019). De-
velopment of agent system for multi-robot search. In
Proc. of 11th Int. Conf. on Agents and Artificial Intel-
ligence, ICAART 2019, Volume 1, pages 315–320.
Preece, A. (2018). Asking ‘why’in ai: Explainability of in-
telligent systems–perspectives and challenges. Intel-
ligent Systems in Accounting, Finance and Manage-
ment, 25(2):63–72.
Rosenfeld, A. and Richardson, A. (2019). Explainability in
human–agent systems. Autonomous Agents and Multi-
Agent Systems, pages 1–33.
Samek, W., Wiegand, T., and Müller, K.-R. (2017). Ex-
plainable artificial intelligence: Understanding, visu-
alizing and interpreting deep learning models. arXiv
preprint arXiv:1708.08296.
Sweller, J. (2011). Cognitive load theory. In Psychology of
learning and motivation, volume 55, pages 37–76.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. (2013). In-
triguing properties of neural networks. arXiv preprint
arXiv:1312.6199.
Weiss, G. (2013). Multiagent Systems. Intelligent Robotics
and Autonomous Agents. The MIT Press, Boston,
USA.
Wooldridge, M. and Jennings, N. R. (1995). Intelligent
agents: Theory and practice. The knowledge engineer-
ing review, 10(2):115–152.
Human-agent Explainability: An Experimental Case Study on the Filtering of Explanations
385